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I. INTRODUCTION

The purpose of this research was to study the feasibility of c_n-

pletely integrating a small magnetic memoryon a single substrate. The

ultimate goal is envisioned as a substrate of silicon with the complete

complementof electronic circuitry formed by diffusion processing around

the outer periphery. The memoryarray, per se, would be fabricated by

multilayer vacuumdeposition in the central region of the substrate. In-
terconnection of the array transmission lines and electronic circuits would

be affected by thin film metallization employing vacuumevaporation.

A memoryof this type would be extremely compact and lightweight.
Becausethere are no hand-formed interconnections the schemeprovides for

potentially high reliability. Oncefabricated the memorybecomesessenti-

ally a single "block" and as such should be physically rugged, and able to
operate under high ambient accelerations and vibration without failure.

Finally, a compactmemoryplane of this type complete with selection, driv-
ing, and sensing electronics provides a basic modular unit which can be

easily stacked to form a wide variety of larger memories. These character-

istics makea memoryplane of this type ideally suited for space applica-

tions where reliability and flexibility, coupled with small size and light-
weight, are of utmost importance.

As an initial step toward completion of this overall memoryconcept,
this one year program has concentrated on developing a hybrid system. The

memoryarray has been fabricated on a separate substrate. This array con-
tains all the drive and sense transmission lines and the thin magnetic film

memorycells. In addition, the selection diodes are mountedon the word

lines of this array. The electronic circuits are mountedon daughter boards

by type, i.e., driver gates, bit drivers, sense amplifiers, etc., and these

are, in turn, interconnected with each other and the memoryplane by a sys-

tem mother board. This latter printed circuit board contains a centrally
located recess which accepts the array substrate and provides the intercon-

nection patterns to cc_plete the system. The electronics are designed to
be completely fabricated by monolithic techniques° However, in the system

constructed, somediscrete componentswere used to avoid the excessive cost
of fabricating prototype integrated circuits for this initial model°

The program effort was divided into the four major areas: system de-

sign and analysis, keeper development, circuit design and analysis, and



memoryarray fabrication. In the system design and analysis phase the bver-

all parameters and performance-fabrication trade-offs were decided. Digital-

and analog computer programs were written to perform general memoryarray

analysis. Theseshould be useful to M.S.F.C. in future memorysystem analy-

sis problems. A flexible keeper material was designed and tested which has

a relative permeability of approximately lO to above 200 MHz. This is a

critical componentto all flat thin film memorysystems. As a result of the

circuits effort a completely integrable system of memoryelectronics was de-

signed and evaluated. A system power consumption of 1 watt at a 250 kHz

read-write cycle was achieved. It is also significant that a high degree of

modularity was achieved within this design so that a basic circuit module is
used for each function. This permits redundancy techniques to be employed
in fabrication of the ultimate memoryplane and thus provides for a potenti-

ally high yield. The fabrication effort was responsible for developing the
techniques of multilayer evaporation necessary to fabricate the memory array

plane. This involved the selection of a combination of materials that were

chemically and thermally compatible and could be evaporated to large thick-

ness. One of the major problems solved in this phase was that of achieving

stable insulating layers of SiO over relatively large planar areas. A new

type of evaporation source was conceived and developed during the contract

for this purpose.

Because of time limitations an operable system was not attained.

Peeling problems associated with the permalloy-SiO interface within the film

array prevented a completely satisfactory plane from being constructed.

There is little doubt_ however, that this problem can be solved with addi-

tional future effort. All other major fabrication problems have been solved

and a compatible system developed. It is believed that the results of this

research do indicate the feasibility of the proposed thin magnetic film in-

tegrated memory concept. Using the techniques developed a memory of lO6 bits

can be packaged in a volume of approximately lO 3 cubic inches thus providing

future space probes with a highly sophisticated computer memory with high

reliability and low power consumption.



II. MEMORYSYSTEMDESIGN

A. INTRODUCTION

The design of the overall memorysystem involves trade-offs between

physically realizable fabrication parameters and electronics capabilities.

As an overall goal, drive currents of less than 200 ma and sense signals

out of the transmission line of approximately 2 mv are desired. Although

this particular program required a design operating at 100 kc repetition

rate, all work is being carried out with a 200 ns cycles time as a basic

goal. This small system is directed toward studying the fabrication and

electrical constraints for an all evaporated memoryof this type with all

integrated circuits. Satisfactory achievement of such a system should

provide future space craft with main processor memories of high reliabil-

ity, low power consumption and small physical size.

B. BASICMEMORYPLANE

The basic memoryplane consists of the array of magnetic bits and

all associated drive and sense lines plus word selection buss lines and
selection diodes. The configuration is shownin Figure 2.1. The magnetic

film storage media consists of strips locatedunder every other sense line

with the easy axis along the length of the strips. In this arrangement,

there is no critical alignment of the word line mask since the film is

continuous in the easy axis direction. Bit isolation along the strip is

effected by domain walls. Such walls have been shown to be stable under

pulse conditions in previously published systems. A ferrite keeper covers

the entire array.

Structurally the array consists of a substrate with successive

layers evaporated to form a ground plane, magnetic film, bit-sense lines

and word lines. Intermediate layers of insulation are also evaporated.

A vertical cross-section is shown in Figure 2.2. A keeper over the en-

tire array minimizes demagnetizing fields, and eddy current spreading

effects in the ground plane.

System analysis and design can be broken down into the areas of

magnetic film properties, transmission line effects, keeper effects, and

circuits.
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C. MAGNETIC FILM

Although there are various materials which can be employed for

the storage_ film Ni-Fe has been chosen because of previously demonstrated

capability.

From a system design point of view, geometry must be chosen to

achieve as much stored flux as possible, consistent with stability from

creep and low dispersion. In the structure chosen for this system, the

film is continuous in the easy axis, i.e., there is no physical point of

discontinuous M. Although rigorous analytical treatment is impossible

with nearly any practical geometry, it should be reasonable to assume an

oblate spheroid approximation for demagnetizing calculations. This

approximation has been shown reasonable by a number of experimenters and

is employed here.

For calculation the bit size is assumed equal to the bit line-

word line intersection. Assuming the word line is i0 mil wide and the bit

line 20 mil_ the magnetic storage location is then rectangular with dimen-

sions of i0 mil X 20 mi!. Thickness is chosen to be a compromise of creep

sensitivity and stored flux. Middelhoek I has shown a maximum in stability

occurs at approximately 750 _ which is the thickness corresponding to the

transition from cross-tie to Block wall structures. This thickness is cho-

sen in this system. The demagnetizing field is approximated (as an open

flux element) by the expression

c

H d (oersted) - b (4WM)Ad (2.1)

where

C

b =

M =

Ad =

film thickness

length in hard direction

discontinuity in magnetization at film edge

demagnetizing factor which is a function of the

ratio of easy axis length/hard axis length

A plot of A d is included as Appendix A of this report. If the film is

considered to have no keeper then M is equal to Ms, the saturation magnet-

ization, or approximately 800 gauss. For c = 750 A = 75 X 10 -8 meter,

6



b = i0 mil = 2.5 X 10 -4 meter and a, the easy axis length, of 5 X 10 -4

meber the .... _ .....=_'_

Hd = 0.96 Oersted

If the film is i0 mil X i0 mil, the demagnetizing factor from Appendix I

is 0.79 and the open flux structure demagnetizing field becomes

Hd = 2.37 Oersted.

This shows the effects of changing the easy axis length, i.e., the width

of the bit line. Since the dispersion is very sensitive to easy axis de-

magnetizing field strength and disturb margin is decreased with increasing

demagnetizing field, the value of 2.37 Oersted is probably impractical.

However, it will be shown later that the keeper affects a flux closure of

approximately 80_. Thus, with a keeper, M _ 80 gauss and H d reduces to

Hd = 0.57 Oersted (with keeper, i0 × i0 mil film)

Hd = 0.20ersted (with keeper, i0 × 20 mil film)

In either case, this is small with respect to normal values of H and the
C

film should be quite stable on a dc basis. Demagnetization effects on write

currents will be discussed later.

The film properties we are then aiming for are these values:

Thickness = 750

Hk = 40ersted

H => 2 0ersted
C

dispersion + skew =<±

7



D. KEEPER EFFECTS

A magnetic keeper closely situated to the memory array provides

significant improvement in a number of ways. With respect to the magnetic

film itself it decreases the demagnetizing field, as previously discussed,

and it permits nearly i00% flux linkage to the bit line by providing a low

reluctance flux path around the film. It is well-known that the flux

penetrating into the ground plane causes a damping effect of eddy current

origin as the film is switched. With a keeper this effect is nearly elim-

inated.

It can also be shown that the keeper plays a significant role in

minimizing the reduction of the H field due to eddy current decay when

currents are passed down the drive lines. These effects can all be ana-

lyzed by straightforward image techniques which are developed in Appendix

B. From the derivations in Appendix B it is found that the effect of the

keeper is to produce a magnetostatic image of a magnetic film equal to

I-_ rMi = 1 ) Mf , (2.2)

and an image of a current carrying conductor equal to

li _._r - i (2.3)

where

M. = magnetization of the film image
1

I. = amplitude of current image
1

Mf = magnetization of the actual film

I = amplitude of the actual source current

_r = relative permeability of the keeper

With these image solutions it is possible to estimate the effect of the

keeper on demagnetization fields and current spreading effects.

The effectiveness of the keeper in reducing demagnetizing fields and

increasing bit line flux linkages can be illustrated by the following exam-

ple. If the relative permeability of the keeper is _r = i0 then the material



creates an effective magnetic image of the film magnetization of 0.8 Mf.
• Within the film itself, the total internal field is the algebraic sumof

its own demagnetizing field and the external field of the image. Since

the film-to-image separation is very small this external field is approx-
imately equal to the image demagnetizing field, which is in turn 0.8 times

that of the actual film. Thus, the effective demagnetizing field is only

20_ of what it would be without the keeper.

Similarly, the flux linkage to a bit-sense line located between the

film and image is the sumof the linkages due to the image and actual film.
In the case described:

where
kT = total flux linkages
9. = total flux in filml
9f = total flux in image

thus, nearly complete flux linkage maybe realized with the keeper.
In the ground plane below the film the flux from the image is oppos-

itely directed to that from the film, thus causing a canellation. This

nearly eliminates eddy current braking of magnetization rotation which nor-

mally occurs with films over conducting ground planes.

With these considerations of keeper effects in mind, it is seen that

a keeper with _r _ i0 is desirable. Higher permeabilities are not neces-
sary. From a practical point of view we have specified for this program the

development of a keeper materials with _r = 8 and madein such a way that
separation between line and keeper should be approximately 2 _ or less.

Eo WORDLINE ANDDRIVEFIELD ANALYSIS

In considering operation of a memorysystem,transmission character-

istics into and out of the array are of prime importance. In a memoryof

the type being developed here, word line and bit-sense line characteristics
are different and must be analyzed and designed separately. Computerpro-

grams have been developed to aid in the analysis of the transmission system.



_ile the numerical examples in this report are directly related to the

system under contract, it should be emphasizedthat the programs and tech-

niques are completely general. Thus, a wide variety of memoryproblems
can be analyzed with these techniques.

There are two basic problems to consider when designing the word

drive line system. First, the drive efficiency, i.e., the resulting H

field per ampereof current in the line, and secondly, the pulse attenua-
tion along the line length must be determined.

i. Line Efficiency

The problem of determining the field for a given current through a

word line can be broken up into three parts. These are the field due to

the drive current in free space, the field due to the magneto-static effects

of the keeper, and finally the field due to eddy currents in the ground

plane. All three effects can be calculated from the basic equation of the

field generated from a current carrying flat strip. The derivation for this

equation is carried out in Appendix C, yielding the result

I _tan-iQ, + w/2 ), tan-i( t- w/2 )]] (2 5)H = Lh_r---_," h h " "

In this expression:

H = horizontal component of the total field

w = width of the current carrying strip

h = vertical separation from strip to point of field

calculation

t = horizontal distance from center of strip to point of

field calculation

i.i Field From Actual Current. Note that for the case where

t = 0, i.e., directly beneath the current carrying strip, the above ex-

pression reduces to

HII (center) - _wl tan-i/<-_-].w (2.6)

From this expression it is easy to see that the ratio of w/h must be as

i0



large as possible and w as small as possible in order to maximize the
field. Note_ however, that been_!seof the shape of the tnn -I _]nction_ no

appreciable increase in field strength occurs for w/h > 12. At this width

to separation ratio the resulting field is approximately 90_ of its maxi-

mumattainable value of Hll(max) = I/2w. In design of the line system then
we strive for a geometry where

12 < /i

To achieve maximum drive fields it is desirable to reduce w. It

was previously shown_ however, that the stored flux in the film is directly

proportional to w_ assuming the film to be the same width as the drive line.

Therefore, the final dimensions chosen must be a compromise so as to yield

a satisfactorily large sense signal at drive current compatible with inte-

grated circuit electronics.

1.2 Field From Ground Plane Currents. The field resulting from

eddy currents in the ground plane is difficult to determine in general.

Recently Liniger and Schmidt 2 have presented a completely general solution

to a single filamentary current over a ground plane of finite resistivity.

The resulting equations must be solved by numerical techniques of an exten-

sive nature. Fortunately under limiting conditions of either a very thin

ground plane or a very thick one, the calculations are considerably simpli-

fied. In this report only the case of a very thin ground plane is described.

This is the condition existing with an evaporated conducting layer.

Smyth 3 shows that for a thin ground plane the field resuiting from

induced currents can be accounted for by an image of the original source.

The polarity of the image is such that the vector potential A at the con-

ducting surface does not change instantaneously. The decay of the eddy

currents is accounted for by letting the image recede with a velocity gov-

erned by the resistivity and permeability of the ground plane.

For example, consider the case of a current carrying strip at height

h above a thin ground plane. The vector potential at the surface of the

ground plane is zero. Now if a current step I = o, t < o; I = i, t _ o is

applied to the strip an image will appear at a height h below the ground

plane such that I = o_ t < o; I = -i t _ o. Thus, the image is a negative

ii



current, i.e., oppositely directed from the original source. The H field

on the positive side of the ground plane due to this image can be calcu-

lated directly from the previous equation as

Ii [tan-lt l + w/2j _ tan-_t'- w/2)] (2.7)Hlli - 2r_ h. _ h.
i l

where now I. is the image current, i.e., I. = - I and h. is negative. It
i I i

can, therefore, be seen that since both Ii and hi are negative numbers the

resulting image field adds to the field of the strip which would exist if

the ground plane were not present.

Since ground plane eddy currents are transient in nature HII i is

time dependent. Smyth shows that this can be taken into account by letting

the image recede from its initial t = o position of -h, with a velocity of

2p

s (2.8)V =

where Ps is the sheet resistivity of the ground plane. Thus for an applied

current step at t = o, the H field resulting from ground plane currents is

-I [tan-l' _- w/2 )- tan-1 l + w/2 )] (2.9)Hlli(t): _ Ch +_ Ch +_o

The velocity associated with a 2 micron aluminum ground plane can be shown

to be

v : 2.2 × 104 m/sec

since Ps : 1.41 × 10 -2 and _ : Zo" This means that in only i0 ns the image

will have moved 220 microns.

To determine the field for an arbitrary current pulse shape a com-

puter program was written. For this program, an arbitrary pulse shape is

approximated by a sequence of positive and negative steps. Up to twenty

12



steps maybe used to approximate a pulse. The actual program and operating
_instructions are not given in this report; however, complete information

can be obtained at any time by contacting the Solid State Circuits Lab at

Georgia Tech. Someselected results obtained from this program during the

system design phase of this contract are shownin the following four fig-

ures. In these computer runs the total field under a strip line, with a

thin ground plane present, is calculated. Thus, the computer program cal-

culates the sumof the fields due to the current in the strip line and the
induced ground plane currents.

Figure 2.3 showsthe effect of approximating a finite rise time

current with a single step and a combination of two steps. It is seen that

a single step approximation is optimistic at very small time periods but

pessimistic at extended times. The difference in peak amplitude of fields
predicted is less than i0_ in this case. The fields were calculated for a

i0 rail wide strip line located i0 b above a ground plane. The sheet

resistivity of the ground plane is assumedto be 0.014 ohmper square. Note
how rapidly the field decreases from its peak value.

Figure 2.4 showsthe field resulting from a i amp, iO ns wide cur-

rent pulse. Four steps have been used to approximate the leading edge and

three have been used at the trailing edge. Note that the peak field cal-

culated is identical to that previously obtained with a two-step approxi-
mation. This indicates that rather crude approximations can be used with

little loss in information. The interesting aspect of this calculation is

the observance of a negative H field at the trailing edge of the current

pulse. While such a reverse hard axis field might aid the writing process

of a film element, it is undesirable as a disturbing influence since bi-

polar hard axis disturbs create worst case creeping.

Figure 2.5, however, illustrates that adjacent word line disturb

fields are of negligible amplitude for a thin film structure. In this

figure the drive current is identical to that used in Figure 2.4. The

fields calculated are at three different horizontal distances along the

ground plane. These are (i) directly under the center of the i0 mil drive

line, (2) directly under the edge of the line, and (3) 20 mil from the cen-

ter of the drive line. From this data two features are apparent. First,

the drive field under the line is non-uniform, falling to half amplitude

at the edge. It can be shown, however_ that the field under the line

13
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decr@ases only about 15_ over the center 80_ of the strip width. Secondly,

"it is important to note the drastic drop in field outside the strip line.

Note also the reduction in negative field. Thus, the integrated drive line

structure is well suited for film memory application because of the ability

to confine the fields to the vicinity directly beneath the drive lines.

This is not generally true for plated wire or mylar sheet systems.

Finally, Figure 2.6 shows the effects of a leading edge peak of the

applied current. This is a normal characteristic of actual drive currents,

resulting from the reactive impedance of the line. Note that the peaked

current provides a significant increase in field during the time when read

out would occur in a memory. Thus, some overdrive is provided for the read

field and a larger peak sense signal will be obtained. Of equal importance

is that the field at the trailing edge of the pulse is not affected, hence

the write operation is not hindered in any way by the leading edge peaking.

1.3 Field From Kee_er ImaGes. The previous calculations are based

on fields resulting from drive line and ground plane currents only. The

results are somewhat discouraging since the effective field drops so rapidly

with time. Thus, where it was anticipated that the ground plane currents

would create an effective field doubling it has instead been found that the

time constants are so short that a 20_ increase at best, occurs for prac-

tical pulse widths. It is at this point that the effect of a good magnetic

keeper becomes important.

Consider now the resulting field umder the strip line resulting from

the sum of the drive current, ground plane currents, and magnetostatic image

currents in the keeper. Recall from the derivation of keeper properties

that the effect of a keeper can be taken into account by imaging every ex-

ternal current with one symmetrically located and of magnitude

li : < _r - i
_r ¥i ')I

Consider a strip transmission line 250 _ wide situated h s = i0

above a ground plane of Ps = 0.014 ohm per square. In addition, we locate

a keeper of _ = i0 a distance hk = 2 _ above the strip line. Assume the

dimensions are referenced to the center of the strip line thickness. If we

now assume a current step is applied to the drive line a first order

17
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approximation of the resulting field can be obtained by considering the

following sources:

i) Strip line alone,

2) Magnetostatic image of strip line current in the keeper,

3) Eddy current image of the strip line from the ground plane

receding with velocity v = 2 ps/_ ,

4) Magnetostatic image in keeper of 3) which also recedes with

velocity v.

A diagram of these is shown in Figure 2.7.

The total field as a function of time can be approximated by summing

the contributions of each current source shown. The current strength in

each source is:

(i) I

- _o

(3) - I

- _o

(4) <_ ; _o _) Q-I)

Note that at t -_ images (3) and (4) are at h : _ _, respectively and con-

tribute nothing to the resulting field. Thus, the steady state field value

is given simply as

w W

Hll (s's') = 2m_ _" h - tan _ •
s s

(br - l)I _ + w_ __ w

+ ($r + i) 2_w tan-i s + 2hk2 s 2 . (2.10)

Recall in the above equation _ is the horizontal distance from the strip

line center to where the field is to be determined. See Figure C.I. For

design purposes of a memory system, one needs no more than the steady state

equation. However, to illustrate the effect of the keeper more fully we

have calculated the time varying field at the center of a strip line with
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and without the keeper. This is shown in Figure 2.8. Both calculations

are base_ on a single step of _r _+ _t + = _ The ..... *_- " _ -'_

line i0 _ above a 0.014 ohm per square ground plane. In the case where a

keeper is present _r = i0. The keeper solution is based on the 4 image

approximation of Figure 2.7. Word line to keeper separation was assumed

to be 2 _. From this it is observed that a good keeper can offset many of

the limitations of a poor ground plane.

As a result the studies carried out on field efficiency as a function

of line geometry we have chosen a drive line 250 _ wide with up to 12 mil

line to ground plane separation. In addition, we specify a magnetic keeper

with relative permeability equal to or greater than 8. While a narrower

line would allow lower drive currents the stored flux would also be propor-

tionately smaller. However, since the greatest single source of power dis-

sipation in a memory is associated with the sense amplifiers it is desirable

to keep them as simple as possible. The decision then is based on the cri-

teria of achieving maximum stored flux and still maintaining drive currents

of under 200 ma. The 200 ma limit is somewhat arbitrary but experience

shows it to be a practical rule of thumb value. The dimensions chosen re-

sult in a drive system requiring approximately 150 ma for a film with

Hk = 40ersted. Detail calculations of this will be shown in Section II-H.

2. Pulse Shape Distortion

Having studied the field efficiency aspects of an evaporated trans-

mission line the second important consideration is the lines effect on pulse

shape.

2.1 Fourier Analysis Conce_t. In the small memory structure to be

fabricated the lines are electrically short, i.e., the delay from one end

to the other is much shorter than a period of the shortest component wave-

length in the pulses. Thus, a lumped circuit approximation can be used for

the line parameters. Even with the simplification afforded by using lumped

equivalent circuits, however_ pulse analysis by hand calculation is too

complicated to be practical. A Fourier analysis computer program was there-

fore developed which not only allowed pulse analysis of the word line system

but is also used for sense line and sense amplifier design analysis. The

program is completely general and can be used in any analogous pulse trans-

mission problem.
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The concept of the analysis is that the signal under investigation

is decom@osed into a series of sinus_idal Fourier components. Then, know-

ing the gain-phase characteristics of the transmission path each component

is attenuated and phase shifted accordingly. The resulting components are

subsequently reassembled and the resulting waveform is the desired output

signal. The information which must be given to the computer is a set of

sample points on the input waveform and the gain-phase characteristics of

the transmission network (transmission lines, amplifier, two port network,

etc.). Appendix D gives a complete description of the operation of the

program including details for coding the required information on punched

cards.

2.2 Calculation of Line Parameters. For transmission line analysis

it is thus necessary to calculate the gain-phase characteristic of the line.

The information required for such calculations is the resistance, induc-

tance and shunt capacitance of the transmission lines. Since the lines in

an integrated film configuration are wide with respect to the separation

from ground, reasonably accurate results can be obtained by neglecting frin-

ging fields.4 Thus the basic transmission line parameters are given as

C e w

C = o r farad/meter (2.11)
h

_°_r 6 )L = _°h + • hy/meter (2.12)
w w

2R

R = _ ohms/meter (2.13)
W

where

w = line width in meters

_r

h = line height above ground plane in meters

R = sheet resistivity of conductors
S

6 = thickness of any magnetic film between the line and

ground

= relative permeability of magnetic film

The line and ground plane resistivities are assumed equal. Also since the

23



conductor thickness is less than a skin depth, even at 200 mc_ the dc

sheet resistivity is used.

The word line alone is assumed to be i0 mil wide located i0 _ above

the ground plane. Intervening dielectric is SiOwith a relative dielectric

constant of approximately c r = 5. Line and ground plane conductors are

assumed deposited to a sheet resistivity of R s _ 0.014 ohm per square. In

addition, the line is loaded with a permalloy film 800 A thick. If

B(max) _ 0.8 weber/m 2 and Hk = 320 amp • turn/meter the relative permea-

bility is _r = 2,000.

From these data we obtain the word line parameters as

R = ii0 A/meter

C = 9 X i0 -I0 farad/meter

L = (49.5 X 10 -9 + 9.4 X I0 -7) hy/meter .

The word line in the memory system proposed is approximately i inch long.

Thus, with a lumped parameter model the total R_ L, and C, become

R=2.8_

-12
C = 22.8 X i0 farad Word Line

L = 5 x lO -9 hy

Note that in the calculation for L the term corresponding to magnetic

loading was multiplied by (8) (5 X 10 -4 meter) since each word line con-

tains 8 bits each 500 _ long. A word line is thus electrically character-

ized by the circuit shown in Figure 2.9.

Carrying out the same type of analysis for the buss lines, i.e.,

the selection lines connected to the high gates, we obtain lumped element

values of

24
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Figure 2.9 Equivalent Circuit Diagram of Word Line Over a Thin Film

Ground Plane
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R= 2 _

C = 17 × 10-12 farad

L = i × 10-9 hy

Buss Lines

Here we have assumed20 rail wide lines separated i0 _ above the ground

plane. The line is approximately 4 × 10-2 meters lone.

2.3 Equivalent Circuit Pulse Analysis. It is now possible to

construct a network representing the path of current flow down a selected

word line in the memory. The result is shown in Figure 2.10. The 25 pf

capacitor represents the effects of the remaining 7 lines connected to the

buss via back biased selection diodes, plus the capacitance to ground of

the high gate transistor. Each back biased diode has a capacitance of

approximately 2 pf and the output capacitance of the high gate transistor

is assumed to be iO pf. The 2 ohm resistor is the buss line resistance;

the inductance is considered negligible. The 17 pf capacitor represents

the total buss shunt capacitance to ground. The 5 ohm resistor is the sum

of the selection diode forward resistance, 2 o_n_ and the 3 ohm word line

resistance. We previously calculated the word line inductance as 5 n hy

and this is included in the diagram. The 184 pf capacitor at the end rep-

resents the total shunt capacitance of eight word lines since each line is

connected into a group of eight. Finally_ the 5 ohm terminating resistor

represents the saturated low gate transistor. The current I is the wordw

current flowing down the word line. We want to determine the waveshape of

this current. The approach to the problem will be to obtain the gain-phase

characteristic, of the network of Figure 2.10, i.e._ the transfer ratio

I

w (®)--A(®)Io (2.14)
E.
3_

Rather than calculate the above relationship for the three loop network,

it was measured.

Note that direct measurement of a bread board circuit of Figure 2.10

is impractical in practice because of the small component values. However,
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by performing a simple frequency transformation practical values can be"

obtained and measurements can be performed at much lower frequencies. To

take the required data we let w(meas) = lO-3w(actual), where w(meas) is

the experimental measuring frequency and w(actual) is the corresponding

frequency for the actual memory. The capacitors for the bread board are

then 0.024 _f, 0.017 _f and 0.184 _f and the inductor becomes 5 _ hy. The

resistors are unchanged.

In the actual memory system the drive supplied to the network is

essentially a step voltage through a current limiting resistance. For the

gain-phase measurements a sinusoidal voltage source with a 50 _ source

impedance was used. At each frequency the current Iw was measured, both

amplitude and phase, and the transfer ratio, equation (2.14) was calcu-

lated. Here E. was the internal source voltage. The results, plotted in
1

terms of actual frequency are shown in Figure 2.11.

Using this gain-phase data in the Fourier series program, and apply-

ing a flat top voltage pulse with 3 ns rise time the resulting current in

the word line was computed. The result is shown as Figure 2.12. Note that

the rise time of the current is only slightly increased. This is a result

of the shunt capacitance but at worst it is now only 4 ns. There is some

slight current peaking but because of the low inductance it is nearly neg-

ligible. Additionally, it is observed that the dc current level is

approached within 10-12 ns. Thus, we have shown that system calculations

can be made on the basis of dc impedances, for the word line, with confi-

dence that the resulting current pulse will not be materially distorted.

Note, however, that this is not generally true and each line system under

study must first be analyzed in detail before such simplifying assumptions

can be made.

F. ESTIMATE OF SWITCHING SIGNAL

With the knowledge that the word current rise time will be approxi-

mately 4 ns it is possible to estimate the peak sense signal to be expec-

ted. A reasonable first order approximation for the switching waveform

is a sine-square function. Thus assuming

e = _ sin2 _t o _-t =_T (2.15)
s m T s

s
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Figure 2.12 Current In Word Line for 3 ns Rise Time Applied Voltage Pulse

as Calculated By Fourier Series Program
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where

T : switching time
s

it is easy to show that the area under the es(t ) curve is equal to ½(EmTs).

Since the area under the voltage-time curve is also equal to the total flux

switched we have

= ½ E T (2.16)
m s

The film is 750 A thick and i0 mil wide, and for permalloy Bs _ 0.8 weber/m2;

thus_ the total stored flux is found to be

_s = 15 × 10 -12 weber (2.17)

The switching time will be slightly larger than the drive current rise time

because of shielding due to the intervening bit-sense line and some flux

trapping in the ground plane. As a worst case estimate assume T _ 6 ns.
S

Using this value for switching time we estimate the peak sense voltage to

be

E -_ 5mY .
m

This value agrees well with actual measurements made by Reardonon thin

film structures. 5

G. BIT-SENSE LINE SYSTEM

In order to design the bit-sense line system properly it is neces-

sary to first study the interrelationships between line parameters and:

Demagnetization of Film

Drive Current Requirement

Capacitively CouPled Noise

Distortion and Attenuation of Sense Signal.
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The following paragraphs present these considerations independently and

a line geometry is then specified.

i. DemaGnetization Effects

Probably the greatest deterent to reducing bit-sense line width is

the increasing apparent dispersion which accompanies higher demagnetizing

fields. This in turn results in higher bit write fields and thus lowers

the disturb threshold ratio Hc/H B.

It was previously shown that with a keeper the demagnetizing field

could easily be much less than the coercive force. Thus, no dc stability

problems enter the considerations. However_ the increase in effective dis-

persion is not insignificant. Crowther 6 has shown the relationship between

demagnetizing field and dispersion to be

where

Hd : Hk(sin _' - sin eto) (2.18)

= effective dispersion which must be overcome to store

information

= intrinsic dispersion in the absence of demagnetizing
o

fields

Since the bit field required during the write operation is

we see then that

H B = Hk sin _' (2.19)

HB = Hk sin d ° + Hd (2.20)

It is therefore necessary to deliver an "excess" bit field equal to the

demagnetizing field.

Thus, for an eighty percent efficient keeper, i.e., _r _ i0, the

required bit field for I0 mil and 20 mil lines can be found using the

demagnetizing fields calculated in the section on film properties. We
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assume_ = 40ersted and (d° + B) = 3° • Then

Hk sin d° = 0.21 Oersted

and

HB(IO mil) = 0.57 + 0.21 = 0.78 Oersted

and

HB(20 mil) = 0.2 + 0.21 = 0.41 Oersted

The respective Hc/HB ratio%which indicate creep stability, are

(Hc/HB)IO mil : 2.56

(Hc/HB)20 mil = 4.9

assuming a film with H = 20ersted. Thus_ the 20 mil wide line providesc
for muchgreater stability of the stored state.

2. Drive Field Considerations

We have previously developed the expressions for field-current

relationships of integrated film transmission lines. For a line with a

perfect keeper_ the maximum field attainable is simply

H = :]: amp/meter (2.21)max W

Using the previously derived values of required bit field the minimum

possible bit currents for i0 mil and 20 mil lines would be

IB (iO mil) = 15.5 ma
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and

I B (20 mil) = 16.4 ma

Therefore_ the reduction in bit current is negligible for the narrow line.

In fact, for a given height above the ground plane the efficiency of a

narrow line is somewhat less, thus tending to equalize the actual currents

required.

3. Induced Noise Configurations

One of the major problems in any memory system is noise on the sense

line induced by capacitive and inductive coupling to the word drive line.

In a word organized memory, the orthogonality of the word line and bit-sense

line eliminates any significant inductive coupling. However, in an inte-

trated film system capacitive coupling is relatively large.

Using a lumped parameter model for the lines involved it is easy to

see the effect of line to line and line to ground separations. Consider a

word line crossing a single sense line as shown in Figure 2.13a. Figure

2.13b shows the equivalent circuit of the noise producing components. The

voltage source represents the voltage rise of the word line as word current

is transmitted. The output terminals represent the voltage between a single

sense line and ground.

The Laplace transform of the noise voltage is found to be

CLL

h (s) S <--_---)

(s)= (2.22)

o CLL IS i
CLG ] _ +

CLG

For a word line voltage which rises approximately linearly such that

E =Kt o=<t<T
r

E =KT T =<t
r r
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the noise voltage peak becomes

T
r

enois e (peak) = K_CLL (i - e-_-) (2.23)

where

T --Rcu (l + ) (2.24)
CLG

It is apparent, therefore_ that to minimize noise the line to line capaci-

tance CLL should be as small as possible and the sense line to ground

capacitance should be as large as possible. In terms of physical separation

we should evaporate the sense line close to ground and provide thick insula-

tion between sense and word lines. Fabrication problems govern what minimum

and maximum thickness of dielectrics are practical to consider. Experience

has shown that 3 to 4 _ is probably a minimum thickness to assure no shorts

occur.

To appreciate the size of the noise voltage consider a sense line 20

mil wide located 4 _ above ground. The word line will be i0 mil wide sepa-

rated from the top of the sense line by 4 _. In this memory the bit-sense

line is about 4.4 × 10 -2 meters long. The insulation is SiO with g _ 5.
r

With these dimensions we obtain

and

CLL = 1.4 pf

CLG = 242 pf .

If the word line voltage rises 2 volts in 4 ns, then K = 5 X 108. For a

sense line terminating resistor of i0 ohms the peak noise voltage is then

calculated to be

enois e (peak) _ 6 my; (20 rail sense line).
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For a !0 mi! wide sense line_ other dimensions being held constant, the

induced noise is reduced to approximately 3.5 my. In either case, the

signal is approximately equal to the expected sense signal. This shows

the necessity for the balanced sense line incorporated in the memory. With

the balanced line the noise is coupled into each half and hence is rejected

with a differential sense amplifier.

From a system point of view then we would like to have line to line

separations around 4 _ or larger, yet not so large as to reduce field gen-

eration efficiency. With a balanced sense line the width is not a critical

factor; however, if one considers a single bit-sense line system a narrow

line is desirable.

4. Frequency Response

Design of the sense line must also take into account attenuation of

the induced sense signal. Since the lines are thin the resistance is rela-

tively high and the close spacing to ground creates large values of shunt

capacitance. This results in high attenuation per unit length. In general

then we desire a wide line to minimize resistance and inductance and large

separation to reduce shunt capacitance. Actual evaluation of pulse degrad-

ation, however, can best be done with computer analysis. During this con-

tractural effort both the Fourier digital program and an analog computer

approach were used to obtain this information. It has been found possible

to generalize the results in terms of the effective 3 db frequency associ-

ated with the sense line. This is illustrated in the following paragraphs.

4.1 Sense Line Equivalent Network. The worst case situation for

attenuation is where maximum line length separates the induced voltage and

the sense amplifier terminals. Thus for the following analysis we assume

a bit switches at the exact center of the balanced sense line. Due to the

symmetry of the line structure, and the location of the assumed induced

voltage, the equivalent circuit is as shown in Figure 2.14. The elements

shown represent total line parameters as previously discussed in connection

with the word line. Thus RI and R2 are the total sense line plus ground

plane resistance of one leg of the U shaped line. The same holds for LI

and L2, and CI and C2. _ is the sense line terminating resistor.

Due to the geometry of the lines the inductive reactance at all

frequencies of interest is negligible compared to the series resistance.

It is therefore possible to characterize each leg as a simple R-C low pass
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filter where the 3 db frequency is given simply as

i
f =
c 2_RC i

where

RIR T
R =

RI +R T

4.2 Computer Analysis. Using the gain-phase data for this type

of network the Fourier series program can be used to determine the pulse

distortion of the sense line. For this analysis we have used a switching

waveform representative of an actual film output.

Figure 2.15 shows the differential output signal for a 50 mc line,

i.e., f = 50 mc, with a 5 mv peak switching voltage induced at the far
e

end. Note the large attenuation in peak signal and the broadening effects

resulting from the limited bandwidth of the transmission line. Taking this

type of data for lines of different bandwidths we can plot graphs of atten-

uation and peak time delay as a function of f . This data is shown in Fig-
C

ure 2.16. The upper curve of Figure 2.16 shows a plot of the ratio of sense

line output peak voltage to switching peak voltage. Note that even with a

i00 mc bandwidth line the signal is attenuated by a factor of two. It is

seen here that very high bandwidths are required to obtain low peak atten-

uations.

The line parameters for a bit-sense line 4 _ above the ground plane

and deposited to a sheet resistivity of 0.014 ohm/square are:

i0 mil line:

20 mil line:

R = ii0 ohm/meter

C = 2.25 × 10 -9 farad/meter

R = 55 ohm/meter

C = 5.5 × 10 -9 farad/meter
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For the 4.4 × l0 -2 meter bit-sense line of this memory and a lO ohm

termination resistor the bandwidths of lO mil and 20 mil lines are found

to be

f (lO rail) = 485 mc
C

f (20 mil) = 400 mc
C

In either case the bandwidth of the line is sufficiently large that

terminal voltages should be approximately 80% of the switching signal.

5. Conclusion

The bit-sense line design problem has been analyzed considering four

prime limiting effects. These are:

l) Demagnetization

2) Drive Current Requirements

3) Capacitively Coupled Noise

4) Pulse Distortion .

Demagnetization considerations provide a strong impetus to choose wide bit-

sense lines. The other three areas produce a tendency to go to narrower

lines but the benefits gained are minor. Since creep has been such a sig-

nificant problem in magnetic film memories in the past, achieving msm_imum

stability by system design is of the greatest importance. For this reason

20 mil wide bit-sense lines have been selected for use in this memory.

H, SYSTEM DESIGN PARAMETERS

In this final section on system design the decisions of the previous

sections are brought together and the predicted characteristics of the array

are calculated.

1. Array System Specifications

Planar Line Dimensions

Word Lines -- lO mil wide on 20 mil centers

Bit-Sense Lines -- 20 mil wide on 30 mil centers

Bit line pairs are therefore 50 mil wide on 60 mil centers.
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Vertical Dimensions (Referenced to Ground Plane)

Bit Sense Line -- 4

Word Line -- i0

Keeper Surface -- 12

These dimensions assume insulation layers of 4 _ and conductor

thickness of 2 _.

Film Characteristics

Hk =_ 40ersted

H = 20ersted
c

(_90 + _) 3°
Thickness 750 A

Kee_er Characteristics

_8= for o _ f =_ 200 mc
_r

2. Predicted Characteristics

From the previous specifications the following system characteris-

tics are calculated.

Stored Flux

% = 15 × 10 -12 weber
s

Flux Linkin_ Sense Line

= 15 x 10 -12 r
2 L I + + : 13.3 × 10 -12 weber

Peak Induced Switchin_ Voltage

E(max) = T2¢ = 4.4 my for Ts = 6 nsec
s

Peak Output Voltage of Sense Line

_o = o.8 _(max) = 3.5 mv

This is for sense line bandwidth of 400 mc.

Word Line Efficiency (H/I)

We calculate only the field directly beneath the center of

the line_ i.e._ _ = 0
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H
w

m

I

where

i _tan-l< w )_w w h +
S

w = 25O

h = i0
s

hk = 2

_r = 8

_r - I w

_r + i " tan-i _ 2(ms + 2hk))_

H
__w : 3.3 x 103 at/m
I amp

Bit Line Efficiency

Using the same equation as for the word line efficiency but with

w : 5oo

hs = 4

hk : 8b

_r = 8

H B at/_q
_: 1.73 × i0 _
I amp

ReQuired Word Field

Hw =H k + HS.A.

where

HS.A. = Shape Anisotropy Field .

From Appendix I

HS.A. (No Keeper) = (Ab - Aa) (+ 4r_M) Oersted

and wit h
a = 5OO

b : 250

c : 750

4_M = 8,000 gauss
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HS.A. (No Keeper) = 1.50ersted .

With the keeper the total required word field becomes:

H = 4 + 1.5 i = 4.33 Oersted

w _r + i

or

H = 346 a.t/m .
w

Required Bit Field

= sin(d

where

Hd is the easy axis demagnetizing field. From Appendix I,

using the film parameters listed in the previous calculation

we find

H d (No• KeeDer)_ = Aa (4wMs)• Oersted

and since A = 0.32
a

Hd (No Keeper) = 0.77 Oersted .

With the keeper then_ the required bit field is

H B = 4 sin(3 °) + 0.77 i - 8 7 1 " '

H B_ 0.40ersted = 32 atm

From the line efficiencies calculated and the drive fields estimated
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the minimum required word and bit drive currents can be determined. These

are found to be:

Required Word Current

I
w

346

3.3 × lO 3

= 105 X 10 -3 amp

Required Bit Current

IB=
32 : 18.5 × 10 -3 amp/line

1.73 × lO 3

Since the bit generator must also supply current down the balance line the

total current required is:

IB(total) : 37 ma

Realizing that these are minimum currents the driver circuits for the

system should be capable of delivering 150 ma of word current and approx-

imately 60 ma of bit current. These magnitudes are within the present

state of the art of monolithic integrated circuits.

Io CONCLUSIONS

In this section on system design, the significant design parameters

have been discussed and general approaches to the required analysis have

been illustrated. The results demonstrate that a thin film memory compat-

ible with integrated circuit drivers is feasible. The features of high

density, nearly ideal transmission line characteristics_ and high reliabil-

ity are inherent in the approach. It seems likely that systems of this

type will find applications in a variety of space missions in the future.
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III. KEEPER FABRICATION AND ANALYSIS

A. INTRODUCTION

The feasibility of operating a high density, low power magnetic film

memory depends upon utilization of a keeper. The keeper consists of a rel-

atively thick plane of high permeability material adjacent to the plane of

the magnetic bits and drive lines.

One of the purposes of the keeper is to provide a flux closure

path for the magnetic bits. This path reduces the demagnitization or stray

field of the bit, thereby increasing the bit stability and reducing inter-

ference between bits. The keeper also causes more of the external flux to

close about the bit-sense line thereby increasing the output efficiency.

Another major beneficial effect is to provide enhancement of the

drive currents by the magnetic image of the drive currents. This image also

reduces the stray field interference of the drive currents.

In order to perform these essential functionsit is necessary that the

keeper have reasonable permeability, low electrical conductivity and losses,

and retain these parameters from static conditions up to frequencies commen-

surate with the memory cycling time. In addition, it is necessary to assure

that a close proximity of keeper to memory plane is achieved without damage

to the memory and that adhesion and dimensional stability be sufficient to

maintain good contact between the surfaces.

B. FABRICATION

Commercially available ferrites have many of the properties desired

for a keeper. However, the difficulty with using these materials in their

bulk, sintered form is manifold. Ferrites do not have linear frequency

characteristics or a linear magnetization curve. They also have consider-

able remanence and consequently, high losses at large fields. They are also

hard and abrasive and cannot be machined with ease to fit closely and mate

well with the surface of the memory plane without the danger of scratching

or puncturing the memory structure. Ferrite powders in some form of binder

have been used with success in keeper applications. 7

Three samples of ferrite powder were obtained from the Indiana Gen-

eral Corporation in Keasbey, New Jersey. Their designations and descriptions

47



of the materials in bulk form are as follows:

Type Initial at Freq. Max.
Perm. Freq.

T-! 2000 i00 kHz 400 kHz

H 850 i MHz i MHz

Q-2 40 i MHz 50 MHz

As received, all powders were screened to -60 mesh (250 _). How-

ever, the H and Q-2 powders appeared to be much finer than the T-I. The

T-I powder was the most dense, about 3.10 gm/cm 3, and also had the highest

permeability in powder form as well as in bulk. Due to the higher permea-

bility, the T-I powder was used extensively to the exclusion of the other

two.

Three binder materials were investigated. All three were supplied

by the Dow Corning Corporation and are designated as follows:

RTV 3110 Silicone Rubber Low Viscosity

ETV 3120 Silicone Rubber High Viscosity

Sylgard 184 Silicone Resin Low Viscosity

Associated with each is a particular curing and thinning agent. Working

time of the RTV rubbers can be adjusted from a few minutes to several hours

by the selection of proper amounts and types of curing agents. The addi-

tion of thinning agents generally increased curing time and reduced mech-

anical properties.

Test samples for determining the permeability were made by molding

a mixture of RTV 3120 and T-I powder. A toroidal mold with a rectangular

cross-section was used. This configuration was used to correspond with the

form used to measure inductance on the loose powders. The mold was machined

from brass. No release agents were used when molding the samples.

The density of the powder within the sample was determined from the

mix ratios and the final weight and size of the finished test sample. Four

powder-bearing toroids were made with powder densities as follows:

(i) 1.15 gm/cm 3

(2) 1.43 gm/cm 3

(3) 1.94 gm/cm 3

(4) 2.36 gm/cm 3
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Torroid No. 5 was fabricated as a standard and contained no ferrite.

A sixth toroid was constructed using a different method. Ferrite

powder was packed lightly in the mold and a thinned mixture of Sylgard 184

was poured over the powder. The resin_ however, did not completely pene-

trate the mold and only about two thirds of the sample could be removed

intact. Thin sections of keeper were also fabricated by the same method.

However, the resin tended to channel through the powder and create a

non-uniform structure. Keeper sheets were also made by mixing powder and

rubber as in the electrical samples, and pressing the mixture between mi-

croscope slides. The mixed material was difficult to remove from the glass

slides, and later teflon blocks were used to reduce sticking; however, this

was still unsatisfactory. Keepers were made from Sylgard 184 with and with-

out I0_ thinner and also RTV 3110 with and without thinner. The T-I powder

was dry-sieved through a 320 mesh screen (50 _) for the keeper so that the

particle size would be small with respect to the bits and lines.

The final process evolved from the trials consisted of mixing the

ingredients under vacuum. The vacuum typically measured about 29 in. Hg.

After mixing, the paste was pressed into sheets between two teflon blocks

also under the same vacuum. One side of the sheet was cast very smooth

by placing a sheet of 0.001 in. stainless steel foil against one of the

blocks. The keeper was allowed to cure in atmospheric pressure at about

40° C for 12 hours or longer. The mixture decided upon for the final ma-

terial was a compromise between high density and ease of mixing in the vac-

uum. The ratios by weight were: 5 parts T-I powder, i part RTV 3110, 0.i

part thinner_ and 0.i part standard curing agent.

The test samples No. 2 and No. 4 were examined after testing by

sectioning. Both were found to have a great number of air bubbles. It

is not unlikely that the rest were similar to these. In order to success-

fully eliminate these bubbles in the thin keeper, it was necessary to mix

under vacuum and cure at atmospheric pressure. This was not done with the

samples. Keepers made by vacuum mixing had a higher density than the test

samples and showed no evidence of air holes.

The mixing process consists of placing the ingredients in a cup

which is cemented to the bottom of the vacuum chamber. The vacuum is slowly

applied to prevent boil-over of the liquid. The vacuum is held for about

30 minutes, then the ingredients are mixed. The mixture is then removed
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from the chamber and placed on the stainless foil. The foil is placed

between the teflon blocks and the press is put back in the vacuum chamber.

The vacuum is applied for about 15 minutes, then the blocks are pressed

together to form the sheet. The sheet is allowed to cure as stated above

while the blocks remain over it.

The purpose of the stainless foil is to form a very smooth surface

to place against the memory plane. It is also necessary to provide a

flexible form which could be easily peeled away from the keeper without

damaging the surface. Both the RTV and the Sylgard adhere strongly to

most surfaces and it is impossible to break apart a large surface at one

time without damage to the keeper.

The resulting sheet was then cut to the desired size and pressed

gently over the memory plane. This pressure is sufficient to cause a

slight adherence of the keeper to the memory and when removed some days

later, the keeper face clearly showed the impression of the memory plane

face. This indicates that the keeper flows slightly on prolonged contact

with an uneven surface. This flow is fortunate in that it improves the

closeness of contact essential to good keeper performance.

C. PERMEABILITY MEASUREMENTS

i. Inductance Technique

The first series of electrical measurements to determine the per-

meability of the ferrite powders involved measurements of inductance of a

toroid of rectangular cross-section. The powder was contained in a plex-

iglas form which had the windings fixed to it. The relationship of the

measured inductance to the permeability can be computed if one considers

the toroid to be a long narrow solenoid bent around upon itself. The flux

density of such a solenoid is given by

B = _NI/t

For the toroid, the length t is given by the average circumference of the

toroid which is 2_(r i + ro)/2. The total flux in the toroid is given by

= BA where A = (r° - ri)t. The inductance is the number of flux linkages
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divided by the current or

L

_(r° + ri)
(3.1)

The above solved for _r gives

_L(r° + r )1

_oN2(r o - ri)t
(3.2)

A similar calculation using slightly altered assumptions yields a

similar result and has the advantage that it may be applied to the later

measurements directly. One may assume that the toroid behaves as though

a single wire carrying a current of NI passes through the center and that

the flux in the toroid is a function of the radius from the wire only.

Then, by using Ampere's Law

H" d_=Nl .

The left side = 2zrH, therefore

(3.3)

The total flux within the toroid is then easily computed as

__ro i dr _ in r°
r.

1

(3.4)

The expression for L then becomes

N_ _t _n ro/ri

I 2w
(3.5)
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and solving for _ gives

_r --

2wL

bo_t tn (ro/ri)

(3.6)

Thus under these assumptions br may be directly determined by a measurement

of the inductance.

The inductance of such a toroid containing the ferrite powder as a

core was measured initially by using the toroid in a series L-R circuit.

As oscilloscope was used to measure the voltage across the resistor and

across the series pair. By measuring the ratio of applied voltage to the

voltage drop across the series resistor the inductance can be calculated as

R F_ E \2 }½=T ) - (3.7)

E and E R are taken directly from the oscilloscope. Since the ratio is all

that is important, the absolute accuracy of the oscilloscope is unimportant

(see Figure 3.1a).

The above method is incomplete since it does not account for the

errors due to dissipation in the inductor or stray capacitance. To elimi-

nate the effect of dissipation, an L-C series resonant technique was

adopted. It may be shown by a straightforward calculation that for parallel

resonance

i R___]'
w = T+ L2

where R is the series equivalent loss resistance of the coil. For series

resonance, the resistive term disappears. In the series resonant circuit

the effect of the stray shunt capacitance may be readily computed. The

resonant frequency is

® = T,(c + Cs)
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where Cs is the stray capacitance. In our experiment, C s was determined

to be about 5 Pf by the following method. The resonant frequency was

measured by observing the null on an oscilloscope across the circuit.

Silver-mica capacitors of known value were used to resonate the toroid.

At the three lowest values of C corresponding to the three highest fre-

quencies, three equations of the form

%/ i (3.8)
W i = L(Ci + C s)

were solved simultaneously in pairs for Cs. The average value was then

used to compute the inductance (see Figure 3.1b).

The inductance of the toroid with varying densities of the ferrite

powders was measured at frequencies from about 0.7 MHz to about 35 MHz.

These frequencies varied because for a given toroid, the same set of known

capacitors was used. The density of the powders was varied by mixir4_ the

ferrites in varying amounts of baby powder.

The same test was applied to the first of the toroids which was

made from the silicone rubber and ferrite powder. Duplication of the same

winding geometry as on the powder core was attempted. However, it was not

possible to correlate the results with those obtained from the powders be-

cause any variation in the placement of the windings caused large changes

in the inductance of the toroid. The rubber toroid was then wrapped uni-

formly with 174 turns of wire so that the conditions previously described

in the calculations would be more nearly met. This toroid was then meas-

ured with a standard impedance bridge and the result compared to the meas-

urement by the series resonant method. In this case the inductance did

agree fairly well; however, the permeability indicated by this value of

the inductance did not agree with that for the same density of powder in

the previous measurements.

2. Lon_ Wire Comparison Technique

The previous methods of measuring permeability have the disadvan-

tage that the computation of inductance from the geometry is very inaccur-

ate unless the toroid has a very large number of closely wound turns. In

such a case_ the losses and stray capacitance are quite large as is the

inductance. Therefore, only measurements taken at relatively low
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frequencies would have any chance for accuracy. An alternate method was

developed in which the field configuration could be controlled. The geo-

metry which produces fields having a symmetry compatible with the toroid

is a long straight wire. Near the center of the wire the B and H fields

are concentric about the wire and given very nearly by

I and B ---bl (3.9)

where I is the current in the wire and R is the distance from the wire.

Since the boundary of the magnetic material of the toroid is always tan-

gent to the fields if the toroid is concentric with the wire_ the flux

in the toroid is computed as in the calculation for the case above except

that N = i.

) (3.10): (ro/ri

Faraday' s Induction Law states

and

if the surface of integration contains the cross-section of the toroid.

If

I = Ipeak e-jwt

then N turns of wire about a section of the toroid will develop a voltage

E = jNw%, where __ = }pe -jwt
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Here % corresponds to I = Ipeak. Working now only with peak values

I_eak_tN
Epeak = w 2_ /n(rori) , (3.11)

and solving for _r gives

Eloeak ) i (3.12)
_r = I Ipeak _oNfttn(ro/ri)

Both E and I were measured on an oscilloscope. I was measured

using a Tektronics PC-I current probe (see Figure 3.1c).

This method had the advantage that the system could be calibrated

with an absolute standard. A toroid was made containing no ferrite so that

the permeability was known to be unity_ and the performance of the apparatus

could be determined through the use of this standard sample. The system

was continuously improved. The wire was replaced by a long aluminum rod

which supported the sample on a plexiglas centering guide. Various coil

configurations and measuring instruments were tried. The most satisfactory

arrangement consisted of using a short piece of coaxial cable, the center

conductor of which formed a single turn pickup coil and the other end con-

nected to a Tektronics high impedance oscilloscope such as the Tektronics

545-A with type CA dual trace amplifier.

At frequencies above about 5 MHz standing waves on the line create

variations in current at different positions along the line. By necessity,

the current probe was located about 2 feet from the position of the sample

making it desirable to measure the current at the same position as the tor-

oid. At this point it was decided that instead of relocating the current

probe, the all-rubber toroid alongside the ferrite-bearing toroid being

measured would serve as a direct comparison. In fact, the output voltage

from each toroid is directly proportional to its permeability. Thus, the

permeability of the sample being measured is just the ratio of the output

voltages. These voltages are readily compared on a dual trace oscillo-

scope.

The above method greatly improved the effectiveness of the permea-

bility measurements. However, considerable R.F. noise was encountered
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using an open line at frequencies above 15 MHz. The reason for this is

that the output of the signal generator is very low and the inductance

of the line limits the current to a low value. Thus, the useful signal

is of the same order as stray R.F. fields in the vicinity. To eliminate

this problem it was decided to enclose the experiment in a large diameter

coaxial line. Such a line was constructed from hard copper tubing. The

outer conductor was 2.45 in. I.D. and the inner conductor 1.125 in. O.D.

Using the well-known relation for an air dielectric line

Z° _ 60 _n ro/r i = 47 ohms

The length was 57 in. Reducing cones were used to match the large diameter

line down to a standard BNC connector. A 50 ohm and a shorting termination

were made so that full advantage of the generator power was possible. A

narrow slot was cut along the outer tube to allow exit for the RG 58A/U cable

from the toroids under test. The all rubber toroid and the toroid under

test were placed side by side on a plastic guide near the shorting termina-

tion. Using six inch cables on the toroids_ the coaxial line allowed per-

meability measurements up to 50 MHz (see Figure 3.1d).

The useful frequency range of the measurements above described was

actually limited to about 35 MHz because of the support equipment. The

output from the rubber toroid was quite small due to the small driving

power available. In order for the measurements to be meaningful, no cur-

rent must flow in the pickup coils. These currents are difficult to elim-

inate at high frequencies. Even the short lengths of connecting cables,

combined with the capacitance of the oscilloscope input create consider-

able leading of the pickup coils. A technique for high frequency measure-

ment was adapted to our equipment which enabled measurements to be made up

to 250 MHz.

3. Resonant Line Techniques

Method cited utilized a length of coaxial line as a resonant

cavity. When a coaxial line is resonant at a quarter wavelength from a

shorting termination, the line may be thought of as a lumped L-C parallel

circuit. The same is true for the section of the line nearest the short

when the resonances are at 3/4, 5/47 etc. That is, one may neglect the
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portion of the line ahead of the last quarter wavelength. The resonant

frequency and the inductance of a line are related by

2 i
t_ --
r LC

and hence differential changes in line inductance can be related to changes

in resonant frequency as

dm dL (3.13)2-Z-- = T
r

Near the end of the line, the flux density as a function of posi-

tion along the line may be considered constant over distances small com-

pared to a quarter wavelength. Also, the E field is very nearly zero so

that loading the line in this region does not alter the lumped capacitance

of the line. If the length of the line is changed slightly the change in

lumped inductance is very nearly linear with this change due to the in-

creased number of flux linkages there. If, however, the frequency is held

constant, the effect of moving the shorting termination merely moves the

position of the null. If the end of the line is loaded with a permeable

material the increase in flux in the material has the same effect as

lengthening the line. In order to return the current null to its origin-

al position, the line may be shortened by moving the sliding termination

toward the source an amount to equalize the inductance in the last quarter

wavelength of the line. Thus, a simple measurement of the length of the

line, the interior dimensions of the line, and the dimensions of the tor-

old, will suffice to determine the permeability of the toroid. However,

a simpler technique is to construct a toroid of aluminum or copper identi-

cal to the ones to be measured. At high frequencies, the surface currents

induced in the metal toroids completely shield the interior of the toroid

from magnetic flux and the line must be accordingly lengthened to restore

the position of the null. Thus, the metal toroid behaves as though it had

a permeability of zero.

Let io, im, and if, be the length of the line at resonance with the

line empty, the metal sample in the line, and the ferrite sample in the
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line respectively. It is understood that
m

permeability is then simply

t
O if. The relative

tm - _f

"_R = t - t
111 0

or factoring the above expression

_r = i + (t° - if) / (tm - to) (3.14)

Actually, the line length is not measured but, as shown, only the

changes in length when the appropriate loading is inserted. The resonance

is measured by observing an input current null with a cturrent probe in the

feed line at the connector end of the large co_xia! line. If desired, a

length of ordinary 50 ohm coaxial cable can be added to increase the effec-

tive line length and lower the fundamental quarter wavelength frequency.

However, below about 50 MHz the null point is quite broad and the accuracy

of the experiment becomes poor. Detection was made using a Telonic R.F.

Detector and a Hew!ett-Packard D.C. _with i my full'scale sensitivity

(see Figure 3.1e).

The upper limit of frequency occurs when the circ_nference of the

toroid is about one wavelength for a wave in the material of the toroid.

Assuming that _r = 8 and er = 3, which is the value given for the rubber

alone, this occurs at f _ 300 MHz. A smaller sample and line might be

used to even higher frequencies. A further discussion is contained in the

8, 9
references.

4. Torque Magnetometer TechniQue

The methods of permeability measurement described above utilize

a large toroidal shaped sample. The finished keeper is a thin flat sheet

not amenable to measurement by these means. It was considered necessary

to make some sort of measurement on the actual keeper material to assure

its conformity with the results of measurements on the toroidal samples.

A static torque test was developed for this purpose.

A uniform field was obtained by incorporating the experiment into

the Helmholtz coils of the Kerr apparatus. A calibrated i mil diameter

59



Tungsten fiber attached to a rotating holder with suitable indicating

apparatus was used for determining torque. A disk 1-1/16 in. diameter

was cut from a sample of the keeper sheet. The thin disk is a conven-

ient shape for the calculations of demagnetizing factors. The disk was

suspended by the fiber over a line drawn 4_ to the applied field. The

field was increased in small steps and the torque required to hold the

disk at 4_ was measured.

The measured torque can be directly related to the susceptibility.

The relationship, derived in detail in Appendix E_ is found to be

where

(3.15)

In this expression

A = 2T (3.16)

VH 2 sin @
o

T = measured torque

V = sample volume

H = applied field
o

@ = angle between field and sample plane.

An expression taking into account the exact demagnetizing factors of an

ellipsoidal sample shape is given in Appendix Eo

Using this technique it has been possible to show that the permea-

bility, given as

_r = I + 4wX (egs units) (3.17)

is independent of field strength up to 50ersted and the material exhibits

no appreciable remnant magnetization for fields of practical interest in

memory operation.
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D. QUANTITATIVERESULTS

The keeper material madeby vacuummixing and pressing was deter-
mined to have a density of T-1 powderof 2.36 gm/cm3. This is approxi-

mately 85%of the maximumattainable density of 2.77 gm/cm3 for the T-1

powder which has passed through the 50 _ sieve. The permeability of the
powder is approximately 10.4 and that of the finished keeper, measured

statically, is 9.5.

Inductance measurementson the ferrite powders in varying densities
indicated that the permeability of the powders is nearly independent of the

initial permeability of the corresponding bulk materials. It was indicated

that the permeability was also independent of the frequency over the range

from about 1 to 50 MHz. The permeability was, however, very much related

to the packing density of the powder. Unfortunately, the inductance exper-

iment did not allow calculation of the permeability and the above conclu-

sions were based on the behavior of the inductance for a fixed geometry,

which is only someundetermined function of the permeability of the powder.
The relation of inductance to frequency and density is shownin Figures 3.2

and 3.3.

The actual magnitude of the permeability of the powders was deter-

mined by the Faraday Induction Lawmethod described above. The frequency

range for these measurementswas from I to 50 MHz. The results of these

measurementson the four test toroids confirm the general results of the

inductance measurements. The highest permeability measuredwas about 7.5
for 2.36 gm/cm3 of T-I powder. The results of these measurementsare shown

in Figures 3.4 and 3.5.

The frequency range of the permeability measurementswas extended

to VHFfrequencies as described above. Again, the powderedferrite showed

no significant change in permeability due to frequency.

Finally, the finished keeper sheet was tested for static permeabil-
ity. The permeability was determined to be 9.5. The torque test confirmed

that the keeper material had a linear magnetization versus applied field

relation at least up to about 50ersted applied field. Also there was no
indication of remanencein a field up to 80ersted. The magnetization

curve is shownin Figure 3.6.
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' E. DISCUSSION

The keeper must be an inte=r_l_.....p_+__ of _u^_ design of any magnetic

memory system which utilizes open flux elements such as thin films. In

particular, if the storage density of the array is to be large enough to

be useful, the stray fields from the elements are certain to interfere

with each other as will the driving fields.

In order to construct a suitable keeper for the all evaporated

memory plane, it was decided to utilize the favorable properties of the

ferrites while hopefully eliminating their disadvantages. It was decided

to use finely crushed ferrite powder held in a flexible binder so that the

keeper might be molded against the memory surface or at least molded against

a very smooth surface and then applied to the memory. At the same time, it

was hoped that the powder would yield sufficient permeability.

The question of the permeability is basic to the keeper since it has

been shown that the expressions for both image strength and current enhance-

ment contain the factor _ - i
+ i " Thus an efficiency of greater than 80%

is attainable with a relative permeability of only iO. In the present work

a permeability of 8 was projected from the experimental results. This fig-

ure gives an efficiency of 76%. In order to gain a much greater permeabil-

ity other characteristics might be sacrificed.

i. Theoretical Model for Permeability

A calculation was made to estimate the attainable permeability with

a powdered material. This calculation is similar to Lorentz' calculation

for the electric polarizability. The keeper is assumed to be made of dis-

creet, spherical particles which occupy some fraction of the volume of the

material. The rest is filled with a non-permeable substance. The field

inside of a given particle is computed as though the particle were interior

to a large spherical cavity in the material. The other particles in the

cavity are assumed isotropically located so as not to affect the particle

of interest. Quite naturally, this last assumption is not wholly valid.

In particular, if several particles happen to touch, the demagnetizing

fields of the particles will be greatly disturbed. There is no doubt that

such effects occur. However, the important features of the keeper are pre-

dicted by the simpler assumption.

Let Mo_ Xo and _o denote the magnetic quantities associated with the
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keeper and M' ' b, X , and denote those of the particles. On a macroscopic

scale M = F M' where F is the fraction of the total volume occupied by
o p p

the particles. The field H' within the particles has three components;

H ° the applied field, 4w/3 M ° the demagnetizing field due to the imaginary

cavity, and 4w/3 M' the demagnetizing field due to the particle itself.

+ 4w - M'H' : Ho -7-- (Mo ) (3.18)

Then since M = XH,

From this we obtain

3x'H

M' - o (3.19)

3 + 4wX' (i - Fp)

3F

(3.20)

and recalling that b = i + 4wX we can solve for the permeability

3F (b' - i)

3 + (3- l) (i- _)b o
i (3.21)+

of F
P

The family of curves generated by this relation for differing values

are shown in Figure 3.7. These curves approach the value

3F
_'o =1+ 1-F

P

for large values of _'. This behavior is similar to that in Figure 3.3

which shows the resultant permeability much more strongly dependent on

density than on the bulk permeability of the powder. The fact that the

permeability of the keeper does not seem to be affected by the frequency

may also be explained by the results of this calculation. The permeability

of the T-I ferrite is known to decrease sharply at frequencies above i MHz

yet the permeability of the T-I powder and the keeper made from it does not

change appreciably with frequency even up to 250 MHz.
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The one quantity which does not agree too well with the calculation

is the magnitude of the permeability. The volume fraction of the fabri-

cated keepers is considered to be no greater than 0.6 for which the predic-

ted maximum permeability is 5.5. The measured permeability, however, has

been found to be 7.5 in the toroidal samples. This would indicate that

assumptions made in the calculation of the permeability are not so simple.

The assumption of no interaction between near particles is probably the

greatest source of error.

The fact that the magnetization curve, as shown by the static torque

data, is quite linear is undoubtedly due to the large demagnetizing fields

acting on each particle. Thus, the magnetization of each particle is still

in the linear region. This also gives a good explanation why there was

no detectable remanence.

2. Accuracy of Measurements

Very little has been done to ascertain the losses in the keeper.

As noted_ the keeper does not appear to have any remanence in static tests.

It must be assumed that the losses in the keeper could be compared with

those of the bulk material when the latter is subjected to time varying

fields of the same magnitude as the internal field of the particles in the

keeper. However, the presence of high frequency losses due to the keeper

were noted in the resonant cavity permeability measurements. The indica-

tions were a decrease in the sharpness of the current null. Unfortunately,

the equipment was not calibrated for qualitative measurement of losses.

The methods developed for permeability measurements are considered

to be much more reliable than ordinary inductance measurements. If the

material is isotropic_ the use of a toroidal test sample greatly simplifies

the test geometry. The Faraday Induction Law method is much simpler to

implement and interpret than inductance measurements because the effects of

losses and stray capacitance are eliminated. By maintaining careful dimen-

sional tolerances and obtaining sufficient driving power and detection sen-

sitivity, it is estimated that 5_ accuracy is easily obtainable up to about

i0 MHz. As the materials were soft and difficult to instrument, our accur-

acy is probably no better than 7_ to I0_ up to i0 MHz and probably decreases

at higher frequencies due to limitations in the driving and detecting appar-

atus. In any case, it is difficult to provide a sufficiently high impedance

for accurate measurement at frequencies much above i0 MHz. Although a few
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measurementswere madeup to 50 MHz, dueto very low output from our standard

sample, it is doubtful that better than 20_ accuracy could be obtained.

For measurementat high frequencies, up to microwave regions, the

resonant cavity measurementsof one type or another provide the only

reasonable way to obtain permeability data. Accuracies of ± 5%are attain-

able with this technique. As discussed, our own equipment limited us to

about 300 MHzbecause of the size of the coaxial line used and the samples

employed. For measurementsabove this range the slotted line method is

perhaps the most accurate and has the added advantage that loss factors

are readily obtained. For memoryapplications, it is usually not necessary

to extend permeability muchbeyond the 200 MHzcovered adequately by the

methods described in this report.

3. Physical Properties

Once it was determined that the ferrite powders mixed in a binder

of silicone rubber would meet the electrical needs of the keeper material,

it was necessary to form a sheet of this composite suitable for application

to the memory surface. The electrical test samples were sectioned and exam-

ined under low power magnification. They were found to have large numbers

of sizeable air holes. The literature from the supplier of the silicone

rubber indicated that the rubber alone should cure in deep sections free

from air holes. However, the addition of the ferrite powder greatly in-

creases the viscosity of the mixture. Attempts to cure a mixture of powder

and rubber in vacuum in order to reduce the number of air bubbles revealed

that quite a large amount of air was trapped in the mixture presumably by

the mixing process. Therefore, it was decided to attempt to mix the sub-

stances in vacuum and to cure them at atmospheric pressure. This resulted

in sheets of a very uniform internal structure and free from air holes.

The maximum density of the ferrite powder obtainable from this type

of combination seems to be limited to about 2.5 gm/cm 3. The maximum den-

sity of the powder is nearly 3.1 gm/cm 3. If the powder is mixed with less

of the binder the two will not mix well and dry spots will occur resulting

in pitting of the surface of the sheets when they are peeled from the form-

ing blocks.

The silicone rubbers and resins used have a good adherence to most

surfaces when cast against them. This was particularly true of the Sylgard

184 resin. For this reason the sheets were cast against a stainless steel
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foil which could be peeled back more easily. This method worked particu-
larly well with the RTV3110 rubber. The silicone rubbers have the added

advantage that they will continue to flow for sometime after curing and

the very smoothcast surface did flow about the crevices and depressions

on the surface of the memorywhenheld against it for about two days.

F. SUMMARY

A suitable keeper can be readily fabricated from finely ground fer-

rite powderand a silicone rubber binder pressed into a sheet and applied
to the memoryplane. The magnetic properties of such a material are well

suited for keeper applications. The material retains its permeability for

very high frequencies, at least up to 250 MHz, and does not demonstrate any

significant remanence. The permeability of the material depends strongly
upon the density of the powder in the material. A permeability of 7 to 8

is readily obtained and is sufficient for a keeper. It is not likely that

significantly higher permeabilities can be obtained in this manner and, in

fact, it would not be to any great advantage to increase the permeability
to a muchhigher value since other undesirable effects might be introduced.

Several methods of permeability measurementwere investigated.

Methods involving the measurementof the inductance of fixed geometries

encounter manyproblems at high frequencies. Thesemeasurementsare much
more easily madeby utilizing the compatible symmetryof a toroid and the

fields about a long straight wire or internal to a coaxial line and apply-

ing Faraday's Induction Law. At frequencies between 0.i and 1.0 GHzper-

meability measurementsare probably best madeby resonant cavity methods.
One such method is described in this work. Loss measurementscan also be

obtained directly from this type of measurement.

Thepermeability of powdered ferrites can be estimated by assuming

that the model of a particle in a cavity is applicable and that nearby

particles do not strongly interact, or that effects of nearby particles
cancel each other. The result indicates that for spherical particles, the

maximumattainable permeability is about i0.

This investigation of keeper materials for a thin film magnetic

memoryhas accomplished the purpose of producing an adequate material for

this application. It would be desirable to continue the study of the re-

lation of the keeper properties to memoryoperation parameters. There are,

72



also, several variables whoseeffect has not been investigated. Among
these is the effect of particle size and keeper sheet thickness.

Techniques should be investigated for the experimental determination

of the effect of the keeper on the stability, shape anisotropy, and disper-

sion of the magnetic films. It is likely that the Kerr Effect Apparatus

would be useful in this purpose. In addition, the beneficial effects of

the keeper as described above should be verified experimentally in the
operation of a memorytest plane.
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IV. ELECTRONIC CIRCUITS EFFORT

Several goals were outlined in the original proposal. These

included development of analytical techniques to study the response of the

integrated array, design of drive and sense circuits, study of the possi-

bility of using field effect devices, and the protection of circuit per-

formance at higher repetition rates. Essentially the circuits effort was

a study of the feasibility of an all integrated electronics system. It was

hoped to define the problems associated with the use of integrated circuits

in drive and sense applications with thin film memories.

The following basic results were achieved. Analytical techniques

for studying transmission lines of the system were developed. These are de-

tailed in Section II. A Fourier series computer program for studying the

response of amplifiers in the time domain was developed. This program is

discussed in Appendix D. Performance of the integrated circuit amplifiers

can be predicted with the aid of simple models and this computer program.

Circuit designs which are compatible with the limitations of integrated

circuits were developed and tested. Not only are these circuits easily in-

tegrated, but they are all very similar and make use of a "basic circuit

module" which will simplify the completed system. A design technique for

solving the coupling problem in multistage amplifiers is outlined. This

problem deserves more attention in the future. The relationship between

power consumption, circuit speed or frequency response, and pulse amplifi-

cation is detailed. This relationship could make optimization with respect

to chip area and power consumption a tractable problem. The possibility of

using field effect devices was studied briefly but was rejected because of

the limited number of complete linear functions (such as differential ampli-

fication) available with field effect devices in integrated form. This does

not rule out their use in the future, but means only that it was more con-

venient at the time to work with monolithic bipolar circuits.

The circuits effort is explained in the following six sections.

These sections describe

A. The basic circuit module, common to all circuit design,

B. The sense amplifier,

C. The word line driver,

D. The bit line driver,
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E. The gates,

F. The timing chart, Dower consumption chart and the mother board.

A. BASIC CIRCUIT MODULE

It was desired to obtain as much similarity between the circuits as

possible. This makes the task of integration simpler and means that once

the basic circuit is understood and optimized, design of the various cir-

cuit functions is a routine matter. Optimization can be made with respect

to a variety of performance indices_ e.g., power consumption, chip area of

the circuit, frequency response, radiation resistance, cost, and any other

attribute of a circuit design. The danger of standardization is that when

the basic circuit is optimized with respect to some arbitrary performance

index, it does not do the particular job at hand in the best possible man-

ner. For example, a circuit which makes a good sense amplifier may not

make a good word driver. Fortunately this is not true in the present case.

When compatibility with emitter coupled logic and the limitations of mono-

lithic circuits are considered, the basic circuit module is a best choice

for both the sense amplifier and the gates and drivers.

One of the greatest problems facing the digital circuit designer has

always been the achievement of high speed with low power consumption. This

basic challenge continues into the integrated circuit era. The over-riding

factor in the choice of circuits was the voltage gain/power consumption fac-

tor.

Reference to Figure 4.1 will show some of the general aspects of the

problem. The active element_ the transistor configuration, is represented

as a voltage controlled current source. Equivalent input, output, and

feedback impedances are shown for the device. It should be noted that these

capacitances and resistances are normally themselves functions of frequency.

The current source has a response characteristic which can be represented in

the frequency domain by a simple pole.

One immediately sees the possibility of Miller effect capacitance

adding to the input capacitance Ci. This Miller effect capacitance, essen-

tially Cf multiplied by the voltage gain for the circuit, is typically sev-

eral times greater than Ci. To prevent loading of the preceding stage,

then_ it is necessary that the preceding stage have a low output impedance.
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This is provided by emitter followers in the final circuit design. There-

fore the driving source is represented as a voltage source.

The output resistance R of the amplifier is typically many times
o

higher than the load R L. Thus the low frequency voltage gain is given by

gmRL . The frequency response of the amplifier is not determined by the

frequency response of the current source, but rather by the pole of imped-

ance of the RL - Co parallel combination. For example_ the devices chosen

for the basic amplifier have output capacitances of about 7 picofarads.

Add 3 picofarads of stray capacitance and a load resistance of i000 ohms,

and the parallel combination has a pole at 16MHz. This is in comparison

with the pole at about 50 MHz in the frequency characteristic of the cur-

rent source. The relationship between voltage gain and frequency response

is thus established. The first break in the frequency characteristic is

inversely proportional to the voltage gain of the circuit, for a fixed gm"

The relationship between frequency response and voltage gain may be

extended to include power consumption. Most devices show an increase in

transconductance as the quiescent current is increased_ at least to a

point. The integrated circuit devices chosen for this work show a direct

increase in transconductance as the current level is increased. For these

particular devices, the proportionality constant is 8 millimhos per milli-

amp of quiescent current. This relationship is not affected by the quie-

scent collector voltage.

These conclusions may be drawn. The gain-bandwidth product for the

= I/RLCo, the product is simply gm/Co. Thecircuit is gmRL_c, but since w c

gain-bandwidth product is thus directly proportional to the quiescent cur-

rent consumption. The small signal characteristics of the amplifier are not

affected by collector voltage if it is above 700 millivolts. Since collec-

tor power, collector to emitter voltage times collector current_ is in a

sense "wasted" power, it is desirable to operate the transistors in a low

voltage configuration. The most desirable configuration seems to be a low

voltage_ high current circuit with small collector load resistors. Opera-

tion with low collector voltages will require precise control of collector

quiescent current. Typically the circuits chosen operate with 2 volts

dropped across the load resistor and one volt collector to base.

The greatest signal amplification takes place in the sense amplifier.

Since standardization of circuit types is helpful in integrated circuits

work, the requirements of the sense amplifier have heavily influenced the
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choice of circuits for the various drivers and gates. A differential

amplifier pair was chosen for the basic module in the design of the sense

amplifier. This choice was obvious for the input stage_ since the bit

line is balanced. However the advantages of the differential pair led to

its use in all of the circuits.

The advantages of the differential pair as a basic building block

are listed in Reference (i0). The use of a balanced configuration allows

many ambient effects, such as power supply variations and temperature

changes, to be cancelled out. No capacitors are normally needed and the

resistance values are relatively low. Operation of the unit depends on

resistance ratios rather than absolute values. With the addition of output

emitter followers, the quiescent output voltage can be the same as the in-

put voltage. Stages may thus be directly cascaded. This is an important

consideration if only one type of transistor, e.g., the NPN_ is allowed on

the chip. Quiescent current levels may be strictly controlled with resis-

tor ratios.

Two other advantages are particularly important. These are the dif-

ferential amplifier's ability to reject common mode signals at the two input

terminals and the natural limiting ability of the amplifier. Suppose two

differential amplifiers are cascaded in a direct coupled circuit and the

quiescent current of the first amplifier changes. Both collector voltages

of the first amplifier then change and change the input voltages to the sec-

ond amplifier. But since this change is a common mode signal the output

levels of the second amplifier change little_ if at all. The natural limit-

ing ability of the differential pair enables its use as a non-saturating

switch. This is the principle of emitter coupled logic, for example_ Motor-

ola's MECL. The total collector current through the pair is determined by

a constant current source in the emitter lead of the differential pair.

The load resistors are selected so that when all of the collector current

flows through one load resistor_ the transistor is still not saturated.

Thus there exists the possibility of using the same circuit module for both

logic and amplification in a digital system.

The basic module consists of a differential pair operating with low

collector voltages and with emitter followers on each collector load resis-

tor. This configuration is shown in Figure 4.2. The differential amplifier

is the R.C.A. type CA3005. The emitter followers are type 2N918 discrete
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transistors. The 2N918 is a passivated epitaxial transistor that is very

similar to a non-gold-doped monolithic transistor. Such a transistor is

used in high frequency linear amplifier applications. The 2N918 is also

used for gating applications in the final circuits. Separate chips would

allow the use of PNP transistors or gold-doped-collector transistors for

these saturated switching jobs. Much progress is being made in placing PNP

and NPNtransistors on the same chip, but at the beginning of the program

few satisfactory high frequency combinations had been reported in the lit-

erature.

The choice of the R.C.A. type CA3005 monolithic integrated circuit

was based on the versatility, availability and economy of the unit rather

than on its absolute performance. The transistors in the CA3005 are not

the state of the art. This is reflected in its unit retail price of less

than three dollars. On the other hand, the CA3005 is very versatile for

broadband amplification work since no collector load resistors are included.

The user adds his own loads. Secondly, a variety of biasing networks is

included and are selected by shorting certain of the TO-5 can's pins to-

gether. Four different combinations are available and complete specifica-

tions are given by the manufacturer for operation of each mode at three

different supply voltage levels. This variety of biasing modes was impor-

tant since it was desired to operate into specific load resistors and at

the same time have low collector to emitter voltages.

Operation of the differential pair is described both from an

analytical and from an empirical viewpoint in Reference (i0), the RCA

Linear Integrated Circuits Manual. These results may be summarized. The

small signal, single-ended transconductance of the pair is 8 millimhos/

milliamp at low frequencies. The current level referred to is the total

current following through the pair, i.e., the current through the current

source in the emitter leg. The current consumed in the biasing network

for the current source is less than 1/2 milliamp and varies with the bias-

ing mode. If the quiescent current through the emitter followers is added

to these currents, total power consumption is obtained by multiplying by

the supply voltage. The transconductance of the differential pair starts

to fall off at a -6 db/octave above 50 MHz. The input and output impedan-

ces in the model of Figure 4.1 are frequency dependent. The output resis-

tance R is typically i0,000 ohms at i MHz but falls to 2800 ohms at 40 MHz.
o
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Co is 4 picofarads at i MHzbut rises to 7.6 picofarads at 40 MHz.
of these data are developed in the reference.

All

B. SENSEAMPLIFIER

The sense amplifier must amplify induced signals from the magnetic

film to the logic levels employed in the system. The sense signal is in a

noisy environment; thus strobing of the sense amplifier output is a neces-

sity. The sense signal is induced in a balanced bit line and appears as a

differential signal at the input terminals to the sense amplifier. Most

noise, however, appears as a commonmodesignal and is rejected by the sense

amplifier. Important design criteria for the amplifier are that the ampli-

fier have a differential input, have good commonmoderejection, and have

the ability to strobe the output signal. Choice of system logic levels sets

the required output levels for the amplifier.

Design criteria set by the requirement of limited power dissipation

were the most challenging. Additional requirements are that the noise level

of the amplifier be much less than the sense signal level and that the am-
plifier have adequate frequency response. The frequency response of the

unit is important from two aspects. First_ time delay of a signal passing

through the amplifier is related to the phase shift of the amplifier. For

a network characterized by poles and zeros in only the left half plane,

phase shift B is directly related to the gain-frequency characteristics.
Group delay for the network is -dB/dw. For example, if the amplifier fre-

quency response falls off rapidly about someWo_thenphase shift will change
rapidly about w also. The resulting time delay will increase. The net

O

effect for a signal possessing frequency components up and above the break

frequency of an amplifier is that the output waveform will be distorted

due to dispersion. One effect of distortion is that the output peak will

occur later in time than the input peak and the amplifier output will tend

to "hang up" after the input has returned to zero. Phase shift is reduced

by wide frequency response. Given an amplifier with a fixed gain-bandwidth

product and characterized by a simple pole, the tradeoff is between a low

dc gain, wideband amplifier which gives a certain peak output signal with

little time delay, and a high gain, low bandwidth amplifier with a slightly

greater peak output but much longer time delay. Slightly greater output is
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obtained in the second case since the low frequency componentsdominate in
the typical input waveform.

A secondmotivation to have a wideband, or flat, amplifier response

is to prevent excessive amplification of low frequency noise signals. Most

commonmodesignals present at the amplifier input will have lower frequency

componentsthan the sense signal. The base of the sense signal is about i0

nanosecondslong, whereas a typical commonmodenoise signal, the bit line
drive pulse, will last 20-30 nanoseconds. Excessive response of the ampli-

fier to low frequency signals makes the noise rejection problem more diffi-
cult.

Somecircuits in the final design have their power supplies turned
on and off to limit total dissipation, but it was not possible to do this

with the sense amplifier. Thus power dissipation in the sense amplifier

is a critical factor. There are eight sense amplifiers and each amplifier
uses 80 milliwatts. The total power consumption is then 640 milliwatts for

sense amplifiers alone. This is an appreciable portion of the i000 milli-

watt total dissipation allowed for the memory. Three stages are normally

required for sense amplifiers of this general class. This meansabout 27

milliwatts per stage is allowed. Since the minimumreasonable voltage

supply is i 3 volts, 4.5 milliamps per stage is allowed. At this point the
importance of logic levels can be seen. High logic levels require much

more dissipation in the sense amplifier. Perhaps the lowest standard lev-

els are those of emitter coupled logic. These levels are separated by the

drop across the emitter-base junction of a silicon transistor, or, about

750 millivolts. The absolute magnitude of the levels depends on the supply
voltage levels to a logic gate. If 0 and -5.2 are used with Motorola's

MECLlogic, -750 millivolts and -1.55 volts are typical logical levels.

These levels were used throughout the circuit design for this program.

i. Bit Line

The bit line is the transmission line which carries the induced

voltages from the switched film to the terminals of the sense amplifier.

The attenuation in this transmission line should be small since signal

levels are very low and induced noise can become a problem. Design of

this line must take into consideration fabrication problems. Typically

there must be a compromise between low loss characteristics and ease of

fabrication.
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A first order analysis has been madeof typical transmission lines
in evaporated film structures. Whendiscrete transistors are used for the

sense amplifier, the physical size of the amplifier will be too large for
the amplifier to be mountedclose to the bit line. Somefan out of the

transmission lines will be necessary. In the present system, this fan out

was accomplished on the printed circuit board rather than inside the evap-
orated structure. Thus there are two transmission lines between the induced

signal and the sense amplifier. The line on the printed circuit board is

characterized by low loss but a relatively high characteristic impedance.

The evaporated lines are low impedance, lossy lines. These differences re-
sult from the greatly different dimensions of the two lines. The differen-

ces in characteristic impedancewill result in somereflection of the high
frequency componentsof signals traveling downthe lines. These reflections

will be ignored since they are characteristic of the prototype design only

and not of an all evaporated and integrated structure. Complete analysis
of the bit line is carried out in Section II.

Analysis of the bit line indicates that, as far as the induced sense

signal is concerned, the line can be represented as having a frequency de-

pendent transfer characteristic and a certain output resistance. The out-

put resistance is a function only of the resistivity and size of the bit

line conductors. It represents a loss at all frequencies. Above the cut-

off frequency of the line there is additional loss expressed by the declin-

ing magnitude of the transfer function. The transmission line can thus be

characterized as a 3 ohm, 400 MHz line, for example. The output resistance

of the line will form a voltage divider with the input resistance of the

sense amplifier. The input resistance to the amplifier happens to be 22

ohms. Thus 3/(22 + B) : 12% of the sense signal is lost to conductor resis-

tivity. Additional portions of the signal are lost to the finite bandwidth

of the line. Design of the sense amplifier is based on an input signal at

the amplifier terminals of 2.5 or 3 millivolts peak and lasting about iO

nanoseconds. This is approximately 88% of the 3.5 mv peak induced switch-

ing voltage estimated in Section II. For actual evaluation of the ampli-

fier, such a signal is easily obtained by differentiating the rising edge

from a fast rise time pulse generator. The actual signal used is shown in

Figure 4.3.
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Figure 4.3 Excitation signal for sense amplifier. Horizontal scale:

2 nanoseconds/division; vertical scale: arbitrary units.
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2. Offset Problem

The general requirements of the sense amplifier have been outlined

in the preceding paragraphs. Another problem, peculiar to integrated cir-

cuits operating with strict power requirements, is low frequency noise or

drift. This problem is important because the traditional solutions of

coupling capacitors, or large collector to emitter voltages to absorb

changes in operating point, can not be easily applied. Extensive use of

coupling capacitors is ruled out by chip area limitations. Relatively

large capacitors would be needed to couple stages without excessive signal

loss. Large collector to emitter voltages (say, three or four volts) would

solve the problem at the expense of wasted power.

The magnitude of the problem can be easily demonstrated. The first

two stages of the sense amplifier have a pulse gain of 200 and a low fre-

quency gain of about i000. These a_e typical numbers for a variety of cir-

cuits considered. The sense signal at the input terminals is 3 millivolts,

giving a 600 miliivoit output swing. However, offset between the base-

emitter voltages of the input differential pair is typically 3 millivolts.

Thus the differential output signal due to offset is 3 volts, or five times

that of the sense signal. This could not be tolerated in a direct coupled

system.

Plausible solutions include a better match between the input trans-

istors, applying an external bias signal which cancels the offset, and use

of capacitors. Since offset is a function of manufacturing tolerances as

much as temperature differences, and these tolerances are constantly being

improved, it was felt reasonable to use selected integrated circuits for

the input stages. The manufacturer, R.C.A., markets a device identical to

the CA3005 except for tighter offset tolerances. This device, the CA3006,

was used for the input stages. It has a typical offset voltage of i milli-

volt, compared to the 3 millivolts typical of the CA3005.

Cancellation of the offset voltage by an external bias signal was

not felt to be reasonable in a large system and, in addition, would be

difficult since the offset varies with time. The offset voltage can be

represented as a generator attached to the input of an ideal amplifier.

This generator would have strong frequency components up to several hertz.

The only complete solution to the offset problem involves the use

of capacitors. Capacitors may be used as coupling elements between stages

or as feedback elements. When used as a coupling element the capacitor
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reduces the low frequency gain of the amplifier. An equivalent circuit is

shown in Figure 4.4. Resistor _ is the biasing resistor for stage N + i

and offers adc return path to ground for any bias currents. R and R. are
o i

the small signal output and input resistances of the amplifiers. Let the

parallel resistance of Rb and Ri be represented by R. Then,

R : + Ri)

and the transfer ratio Eo/E s is easily shown to be

E
o R s

E s R + R ° s + I/C(R + Ro)

The representation of the amplifier as a voltage source is reasonable

since the output stage of the module shown in Figure 4.2 is an emitter

follower. The output impedance R of the emitter follower is essentially
o

the base resistance of the 2N918 - several hundred ohms - since the col-

lector load resistor is about 2000 ohms and the emitter resistor is several

kilohms. R. for the CA3005 is about 2000 ohms and it is reasonable to
l

assume that the equivalent resistance of the biasing network, i.e., Rb, can

be made large compared to 2000 ohms. The low frequency pole is thus loca-

ted at about

s = - 1/2000 C .

If C is chosen as i00 picofarads, the pole is at 800 kHz. A gain-frequency

plot is sketched in Figure 4.5 for the coupling network.

If capacitors are used to couple stages, two resistors, shown simply

as R b above, are needed for each side of the differential amplifier in addi-

tion to those shown in Figure 4.2. These are used to correctly bias the

differential pair of stage N + i. If direct coupling could be used, the

input to one stage would be tied directly to the output from the preceding

stage.
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A series R_ shunt C_ type of feedback network can be used around the

direct coupled amplifier to solve the offset problem. The cutoff frequency

of the network would be relatively low so that the mid-band gain of the

amplifier would not be affected. A schematic representation of the scheme

is given in Figure 4.6 which shows representative gain-frequency plots for

the open and closed loop amplifier. It is seen that the pole of the feed-

back network introduces a dipole in the closed loop response. The exact

magnitude and location of the dipole, i.e., the feedback ratio and the loca-

tion of the feedback pole, will be discussed later.

The significant factor is that the feedback network is easier to

fabricate than the coupling capacitor network and will likely occupy less

chip area. Reference (ii) gives models for typical monolithic capacitors.

These models show stray capacitances from each terminal to ground. It is

these parasitic capacitances which cause signal losses in coupling applica-

tions, but which are unimportant in the feedback application since one term-

inal of the capacitor is grounded. The feedback network is easier to fab-

ricate in the sense that the losses normally encountered in monolithic

capacitors do not adversely affect performance.

Design of the feedback network in monolithic form is outlined in

Appendix F. The transfer characteristics of a typical line 50 mil long and

3 mil wide have been computed for several excitation frequencies. These

are shown in Figure 4.7. The distributed line does not behave like a sim-

ple R-C network; yet it is still useful as a feedback element. Care needs

to be taken in the design of the feedback loop, but once the loop is de-

signed, the fabrication problems should be less since parasitic capacitances

are unimportant.

There exists a_other possible use of capacitors in a feedback scheme.

This involves the use of active elements to multiply the apparent value of

a capacitor so that the time constant in the feedback network is more easily

achieved. The advantage of this method is that the resulting transfer func-

tion is characterized by a rational expression in the complex frequency

variable s. This is in contrast to the previous method using a distributed

R-C transmission line. The disadvantage is that the capacitor must have

both terminals above ground. This type of capacitor is more difficult to

fabricate than the capacitor with one terminal grounded; that is, the re-

sulting capacitor differs from the ideal more when both terminals are above

signal ground.
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Consider the schematic of Figure 4.8. The circuit would be con-

structed as a differential pair; here only one side of the pair has been

shown. The differential input impedance of the amplifier is shown as R2.

The output admittance of the amplifier has been ignored. Straightforward

node analysis yields the voltage transfer function eo/e i.

i

e C(l +o -gmR3 _R3)
e R1 R 1 + R 2i 1

s +
RIR 2 C (i + gmR3)

It is seen that the apparent value of the capacitance has been increased

by the factor (i + gmR3). To give some feeling for the numbers, assume

that gm = 40 millimohos, RI = i0 kilohms, R2 = i0 kilohms (this is easily

achieved using input emitter followers), R3 = 5 kilohms and C = 20 pico-

farads, a very reasonable value. The equivalent time constant of the net-

work is then

RC = (5 × 103 ) (20 × i0 -12) (i + 200) = 20 × i0 -6 .

The corresponding cutoff frequency is only 8 kHz. This scheme was not used

in the prototype because of the additional complexity of the circuitry.

This would not be the case when an all integrated structure is used.

3. Small Signal Performance

The requirements for the small signal performance of the sense amp-

lifier will be briefly reviewed. The sense signal amplitude at the input

terminals is about 2.5 millivolts. The logic levels of emitter coupled logic

differ by 750 millivolts. It follows that a pulse gain of roughly 300 is

needed. Pulse gain is specified rather than mid-band gain since the sense

signal spectrum is far wider than the bandpass of the amplifier. Thus the

pulse gain is far less than the mid-band gain of the amplifier, typically by

a factor of 5-10 for the particular sense signal and the CA3OO5. Analysis

of a two stage amplifier employing CA3OO5'swas made using the Fourier series

computer program, described in Appendix D. A computer run was made with

each stage characterized by a simple pole at i0 MHz and adc gain of 40.

The output from a 5 millivolt switching signal into a i00 MHz bit line was
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2.47 millivolts peak. The peak output from the two stage amplifier was ,

450 millivolts. The pulse gain was 180 whereas the dc gain was 1600, about

nine times greater. The pulse gain per stage was a factor of three lower

than the dc gain. Actual pulse gains measured are about 20% lower than the

predicted gains.

When the bandpass of the amplifier and the signal spectrum are com-

pared, it is somewhat surprising that anything is obtained from the ampli-

fier. The signal has significant frequency components up to ten times the

cutoff frequency of the amplifier. The primary effects of this narrowband

amplification are that the pulse gain is less than the low frequency gain

and the output peak appears to be delayed considerably from the input peak.

For the present system, this delay is about 30 nanoseconds. The output

appears to be an integration of the input, with the output "hanging up" for

some time after the input signal has returned to zero. These characteris-

tics will be seen in the actual waveforms of the amplifier. Again it should

be emphasized that the R.C.A. CA3005 is not the most sophisticated integrated

circuit on the market. It was used in this design because of its flexibil-

ity and economy. Improved frequency response of the integrated circuits

would allow more freedom in the design of the feedback network.

The total amplification needs of the sense amplifier are easily

satisfied by a three stage amplifier. It would be difficult to accomplish

the amplification and the necessary level shifting in only two stages. The

sense amplifier may be divided into two parts, the preamplifier and the out-

put stage. The output stage can also include any strobing circuitry neces-

sary. The preamplifier has a pulse gain of 150-200, with the output stage

adding the additional factor of two. The output stage is similar in design

to a standard MECL logic gate. It was not constructed but a typical design

is illustrated later. The output stage was not considered to be the diffi-

cult portion of the sense amplifier.

The preamplifier was constructed and evaluated. It will be described

completely. The output swing of the preamplifier is several hundred milli-

volts, so the signal is easily observed on an oscilloscope. In the present

system, the output stage would be constructed on separate printed circuit

cards from the preamplifier and would be connected by coaxial cable. There-

fore a low impedance output was accomplished with double emitter followers.

Were a complete system to be built, the output stage would be constructed as
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an extension to the preamplifier and the additional emitter followers

could be omitted. In the present svstem the output stage must be coupled

through capacitors since the offset stabilizing loop only extends aroumd

the preamplifier. In a complete system, however, the stabilizing 10op

would be carried around the output stage also, and the coupling capacitors

eliminated. These differences are sketched in Figure 4.9. The remainder

of the discussion will be devoted to the two stage preamplifier with feed-

back, but the principles of design apply also to a complete three stage

amplifier with feedback.

The small signal performance for the individual stages is most easily

described in the frequency domain. The measured response for the circuit

of Figure 4.2 is given in Figure 4.10. It agrees essentially with the re-

sponse predicted by the model of Figure 4.1 with Co = 8.8 picofarads, a gm

of 21 millimhos, and a load resistance of 1800 ohms. The output resistance

and feedback capacitance of Figure 4.1 can be ignored. This model gives a

low frequency gain of 37.8 and a pole at i0 MHz. The measured response also

showed a second pole im the neighborhood of 50 MHz due to roll-off of the

transconductance.

The open loop performance of the preamplifier is the product of two

of these stages. The closed loop performance will now be described. A

glance at the frequency response of the individual stages indicates that

very little resistive feedback can be applied around the preamplifier. In

terms of gain-frequency plots, stability is assured if the slope of the

gain plot at 0 db is equal to or less than -6 db/octave. The total open

loop gain, the preamplifier in series with the feedback element, must sat-

isfy this criterion. It is easily seen that the amount of feedback is lim-

ited. An even more serious objection is that the mid-band closed loop gain

of the amplifier is reduced by the feedback. A simple way to assure maxi-

mum mid-band gain, and stability at the same time, is to reshape the gain-

frequency plot for the open loop by a dominant low frequency pole in the

feedback loop. This new pole rolls off the open loop gain at a low fre-

quency, giving the gain-frequency plot a -6 db/octave slope at O db. F_r-

thermore the mid-band gain of the closed loop amplifier is not seriously

affected since the feedback ratio, _, is now small at these frequencies.

A sketch of the gain-frequency relationship for the forward amplifier and

for the open loop system is given in Figure 4.11. It is seen how the feed-

back pole dominates the open loop gain-frequency characteristic.
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with feedback dominated by a pole at i00 kHz. The two

basic circuit modules comprise the forward amplifier. The

feedback cascaded with the forward amplifier yields the open

loop. When the loop is closed, the output/input response is

the closed loop
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This schemeis completely general and maybe used around any ampli-

fier. Success de_ends on the ease of f_rication of the low frequency pole
in the feedback element. Given a maximumR-C product which can be fabri-

cated, it is necessary that the pole synthesized with this R-C be at a much

lower frequency than the first pole of the forward amplifier. In the pres-

ent case this meansthe feedback pole must be at a much lower frequency than

i0 MHz. Thus, the wider bandwidth amplifier will require a lower R-C pro-

duct in the feedback loop to insure stability. In general, the greater the

reduction in gain at dc because of the feedback, i.e., the greater the loop

gain, the greater the R-C product required. Once stability is assured, the

resulting closed loop gain-frequency characteristic can be examined. The

closed loop frequency response will have a zero at the location of the feed-

back pole and will rise at a 6 db/octave rate until it intersects the for-

ward gain of the amplifier. If the feedback pole is too close to the first

pole of the forward amplifier, somepeaking mayoccur in the closed loop

response. Both the stability and the frequency response of the closed loop

amplifier are most easily determined from a root-locus plot. The plot for

the preamplifier constructed is given in the next section (Figure 4.14).

The only generalization that maybe madeis that this feedback schemeis

useful whenthe R-C product, which can be easily fabricated, results in a

pole lower than the required low frequency cutoff of the closed loop and

considerably lower than the first pole of the forward amplifier.

4. Circuit Details and Performance

A circuit diagram for the preamplifier is given in Figure 4.12.

Each differential amplifier is an integrated circuit; the remaining com-

ponents are discrete. Each component is identified on the photograph in

Figure 4.13. The feedback network is the R-C "T" formed by CI, R5, RI7 ,

and by C2, R6, RIB. Each "T" serves one side of the differential amplifier.

The feedback ratio at dc is determined by

R15 R3

RI3 R5 + RI7

In the present case this is 0.0055 = 1/180. The dc gain of the amplifier

is about i/_, so any voltage offset appearing at the input terminals will

be multiplied by 180. The observed offset at the output was between 200
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and 300 millivolts, indicating that the offset of the CA3006 was a little

over i millivolt.

The design of the amplifier is very straightforward. RI and R 2

are terminating resistors for the bit line. The vs!me of these resistors

is limited by the common mode voltage developed across them by the bit

current during the WRITE operation. The amplifier can only stand a few

hundred millivolts of common mode voltage since t_e collector-base quies-

cent voltage of the input stage is 600 millivolts. R5 and RI7 were chosen

to give the desired low frequency pole with CI. The value of CI was arbi-

trarily set at i00 picofarads. Larger values for CI would result in a

lower frequency pole for the feedback. The location of the feedback pole

is given by the parallel resistance of R5 and R!7 combined with C!.

fc = (R5 + _lT)/_R5R17Cl

This is the pole of the voltage transfer ratio. _ is then chosen to give
J

the desired feedback ratio.

Once the open loop characteristics of the forward amplifier are

known_ the feedback loop is designed with the lowest frequency pole allowed

by the fabrication process. The evaluation of the closed loop amplifier may

be made with either Bode plots or with root locus plots. The root locus

plot for the present amplifier is given in Figure 414. The feedback pole

is at 145 kHz. The open loop gain of the forward amplifier is 1200. The

location of the closed loop poles is given for 3 = 1/180. It is seen that

the amplifier constructed has complex poles with rather light damping.

This was done to check the design method since relatively small errors or

parasitic feedback would lead to instability. No instability was observed.

The quiescent voltages and currents are given on the schematic of

Figure 4.12. The total power consumption for the preamplifier is 6 volts

× i0 milliamps, or, 60 milliwattso The emitter followers are operated at

about the minimum current without excessive signal loss. Since the current

gain for the transistors falls off for quiescent currents less than i milli-

amp_ the emitter follower becomes less effective at low quiescent current

levels. The integrated circuit amplifiers are operated at 2.7 milliamps

total collector current in what the manufacturer refers to as "Mode C"
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biasing. This biasing mode has the advantage of maintaining constant the

total collector current over the temperature range from -55 degrees C to

+125 degrees C. This is achieved through the use of temperature compensat-

ing diodes in the constant current sink for the amplifier. An additional

advantage of this particular biasing mode is that the transconductance per

milliwatt of dissipation is one of the highest available. This ratio of

transconductance per milliwatt is a useful figure of merit. For Mode C

biasing with ±3 volt supplies, it is 1.25 millimhos per milliwatt. It is

desirable to have a high transconductance to dissipation ratio at a rela-

tively high current level. This will be explained in the following dis-

cussion.

Direct coupling between the stages requires a fixed quiescent drop

across the collector load resistors. This drop is the supply voltage minus

the desired output quiescent level, plus the emitter-base drop of the emit-

ter followers. Refer to Figure 4.2 again. The quiescent collector voltage

level is V s - IoRL/2 , for a balanced amplifier. Let this fixed quiescent

drop be V d.

Vd = IoRL/2

The power consumption for the circuit, neglecting the power consumption of

the constant current sink biasing network, is

P=21V
o s

for balanced voltage supplies. The voltage gain of the circuit at low

frequencies is

v.a.= •

Substituting,

--%(2Vd/Io)= 2Vd%(2Vs/P)
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v.G.--4VdV (gm/P)

Given a supply voltage, the drop Vd is fixed in order to achieve coupling.

These results follow. Given a supply voltage_ choose the biasing mode

with the highest gm/P ratio, if the resulting gain-bandwidth product is

satisfactory. Remember that the gain-bandwidth product is gm/Co for these

units. Since gm is related to I° by the constant 8 millimhos/milliamp, it

is desirable to have a good gm/P ratio at a high current level.

If the supply voltage is to be chosen, the voltage gain is merely

V.G.= 4 VdVs(gm/2Vslo)= 16 Vd

since gm = 8 1° millimhos, where I° is expressed in milliamps. This ex-

pression has been verified since the measured dc gain is 36 and the voltage

drop across the load resistors is about 2.25 volts. The choice of supply

voltage was made on the basis that since thre_____estages were necessary, and

the total gain required is known, the voltage gain per stage can be deter-

mined. This fixed the supply voltage at 3 volts, the nearest "standard"

voltage. If the supply voltage can be chosen at random, the choice should

be studied with great care using the above principles. Total amplifier

voltage gain could be expressed as a function of total power consumption

for amplifiers consisting of one, two, three, ... stages. For most realis-

tic conclusions_ the voltage gain used should be the pulse gain rather than

the low frequency gain. Thus each possible amplifier would have to be eval-

uated using the Fourier series program. Weighting could be given to the

increase in delay caused by low bandwidths. If this study were made, a

truly "optimum" selection of operating points could be made.

The procedure for selecting the operating point can be summarized

as follows:

i. On a supply voltage versus supply current graph, plot constant

power consumption hyperbolas.

2. For a single stage amplifier determine the pulse gain with the

Fourier series program for a variety of supply voltages and currents. The

pulse gain alone, or in combination with signal delay, can be used as an
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an index of performance.

3. For selected points on the supply voltage - current graph note

the index of performance and connect similar indices, thus forming con-
tours of the index.

4. Form similar graphs for two stage amplifiers, three stage ampli-

fiers, etc. From the entire set of graphs select that operating point

(supply voltage, supply current, and number of stages) which meets the min-

imumperformance requirements with a minimumof power dissipation.

The measuredgain-frequency characteristic of the closed loop ampli-

fier is shownin Figure 4.15. The resonant peak at 3 MHzis the result of

the feedback path. A lower frequency pole in the feedback path would remove

this peak. The primary effect of this peak is undershoot in response to the

impulse-like sense signal. The response of the amplifier for a typical ex-

citation signal is given in Figure 4.16. The excitation signal was that of

Figure 4.3 with an amplitude of 2 millivolts. This signal is formed by

differentiating a pulse from a standard pulse generator. This differentia-

tion results in a positive going signal at one edge of the pulse and a neg-

ative going signal at the other edge. Thus Figure 4.16a shows the amplifier

response to both a negative and a positive signal. Figure 4.16b showsthe

sameamplifier and excitation signal but with the iO0 picofarad feedback

capacitor replaced by a 300 picofarad capacitor. The improvement in under-

shoot is obvious. In all other tests the i00 picofarad capacitor is used.
Figure 4.17 gives a detail view of one of the output signals from the pre-

amplifier. Figure 4.18 showsthe output whenthe amplifier is overdriven.

It is seen that the amplifier limits for inputs slightly greater than the

expected sense signal.

Besides differential amplification, the other important criterion

for the preamplifier is commonmoderejection. This is necessary because
the bit current and induced noise from the word current will result in a

commonmodevoltage at the input terminals. The bit current will result

also in a differential voltage due to any unbalances in the bit lines or

the terminations, but the differential signal should be relatively small.

The word current also introduces a commonmodesignal. Whereasthe bit

current interference can be eliminated by strobing the amplifier output,

the word current signal cannot, since it occurs at essentially the same
time as the sense signal (the sense signal is the induced signal from the

magnetic film switching under the influence of the word current). Ideally
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(a)

(b)

Figure 4.16 Output of sense preamplifier. Part (a) shows output with

respect to ground for negative and positive 2 millivolt

input pulses. Pulse amplification is 150. Feedback capa-

citor is lO0 picofarads. Part (b) shows same response but

with 300 picofarad feedback capacitors. Horizontal scale :

lO0 nanoseconds/division; vertical scale: lO0 millivolts/
divi sion.
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Figure 4.17 Detail of positive output pulse. Horizontal scale: 20 nano-
seconds/division; vertical scale: i00 millivolts/division.
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(a)

(b)

Figure 4.18 Response of amplifier when overdriven with differential signal.

Input for (a) was 4 millivolts. Amplification is 125 and ver-

tical scale is 200 millivolts/division. Input for (b) was i0

millivolts. Amplification is i00 and vertical scale is 500

millivolts/division. Horizontal scale is i00 nanoseconds/

division.
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the word current will result in commonmodenoise only, and no differential

signal will be induced. Any unbalances in the b_t lines or te_ninations

will cause a differential signal. Responseof the amplifier to two levels

of commonmodesignal is shownin Figure 4.19. The commonmodegain of the

s_nplifier is less than one in both cases. The excitation signal in both

cases was the sense signal waveform. The differential inputs were tied to-

gether to give a commonmodeinput. The commonmodegain is relatively in-
dependent of signal frequency since the commonmoderejection increases at

lower frequencies, but so does the differential gain of the amplifier. At
higher frequencies the commonmoderejection decreases but so does the dif-
ferential gain.

5. Output Sta_e and Strobing Circuit

A proposed output stage is shown in Figure 4.20. It is similar to

the basic circuit module except for the addition of a strobing circuit and

emitter followers on the input. This circuit was not actually constructed

but is similar to other circuits employed in the s_n_e amplifier. It would

be normally directly coupled to the preamplifier _nd the offset stabiliza-

tion loop would be taken from the collector load renistors. The stage has

a low frequency gain of 16 and the output levels are those of emitter

coupled logic. With this gain any signal loss in the input emitter follow-

ers is of no consequence. Two strobing transistors, QI and Q2 of the dia-

gram, are provided. These are held in the saturated mode by a positive true

logical ONE from the central processor. Note that the emitter of each of

these transistors is returned to the reference voltage, -1.15 volts, of MECL

logic. The bases of the output emitter followers, Q3 and Q4' are held at

about -i.0 volts when QI and Q2 are ON. The output would be about -1.7

volts in this case, or below the logical ZERO level. The saturation char-

acteristic for a non-gold-doped monolithic transistor is given for moderate

base drives by the Motorola reference as i00 millivolts in series with a 75

ohm resistor. It is seen that the collector current of the strobe transis-

tor will always be a small fraction of a milliamp. The base of the output

emitter follower will never rise above -i.0 volts when strobed off and, in

addition, the collector voltage of the differential pair will not be affec-

ted. Thus the integrity of the feedback loop is not damaged by the strob-

ing transistor.

Typical operating waveforms are sketched in Figure 4.21. These show

that the differential amplifier is actually switched hard over to one side
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(a)

(b)

Figure 4.19 Common mode rejection of sense preamplifier. Output with

respect to ground is shown. Inputs for (a) were 125 milli-

volt sense signals with input terminals tied together. Hor-

izontal scale: i00 nanoseconds/division; vertical scale: i00

millivolts/division. Input for (b) was a 400 millivolt common

mode sense signal. Horizontal scale: 50 nanoseconds/division;

vertical scale : 200 millivolts/division.
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Figure 4.20 Circuit diagram for a typical output stage for sense

amplifier. Quiescent voltages and currents are shown
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by the sense signal. Thus the output waveform and levels are standardized

by t____s stage. Discrimination between a sense "i" and a sense "0" is

accomplished since only one side will rise to the "i" level of -.75 volts.

This side will set the associated R-S flip-flop which serves as the output

register. The other side will actually drop below the "0" level of -1.55

volts, but this will have no adverse effect on the flip-flop.

Power consumption is easily determined and is essentially the same

as a single stage of the preamplifier. It is approximately 20 milliwatts.

Frequency response of the stage should extend out to about 20 MHz because

of the low collector load resistors (i000 ohms). This will mean that the

open loop forward amplifier will be characterized by two poles at i0 MHz

and one pole at 20 MHz. This is a much better situation than three poles

at i0 MHz.

C. WORD DP_IVER

The purpose of the word driver is to deliver positive pulses of cur-

rent with very fast rise times to the word line. The input signal is a

logical ONE which, with emitter coupled logic, corresponds to a shift from

-1.55 volts to -.75 volts. The word driver uses a basic circuit module,

similar to that shown in Figure 4.2, to amplify and level shift the input

waveform. One load resistor and emitter follower is omitted since it is

not needed. The output emitter follower of the basic circuit drives another

emitter follower which acts as the output stage. This single emitter fol-

lower can deliver up to 160 milliamps into the word line. If additional

current is needed, two such emitter followers can be used in parallel.

The circuit schematic is given in Figure 4.22. A photograph of one

such circuit is given in Figure 4.23 and the various components are identi-

fied. A single 2N918 discrete transistor is used as the output stage. This

transistor must be operated with a very low duty cycle in order to withstand

such high current levels. Paralleling two such transistors, or using a gold-

doped-collector transistor, would provide a more sophisticated output stage.

The final design would depend on the exact current level required and the

capabilities of the monolithic transistors. The salient point of the design

is that the basic circuit module can conveniently amplify and level shift

the emitter coupled logic signals and drive a simple output stage. This

same circuit topology can easily deliver 250 milliamps with different supply
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Figure 4.22 Circuit diagram for word line driver
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s

voltages and a different output stage (a higher capacity transistor or two

paralleled transistors).

A one nanosecond rise time is achieved with the use of a snap diode.

The operation of recovery snap diodes is adequately explained in Reference

(12), the General Electric Transistor Manual. The diode is first forward

biased through R4. A certain amount of charge is stored in the junction.

The charge stored is a function of the bias current and the recombination

lifetime T of excess carriers. If the charging current is id, then the

stored charge is

Qf = idT(l- e-t/T)

where the charging current is turned on for t seconds. If the rise time

of the driver is much less than the recombination time, essentially all of

the stored charge is recovered. By recovered it is meant that the snap

diode will remain forward biased until the driver has delivered to it this

much charge in the form of reverse current through the diode. Thus when

the time integral of output current from the driver has depleted all stored

charge, the diode will "snap" off and the voltage across the input to the

word line will rise rapidly. If the output current from the driver can be

approximated as a ramp, then the snap diode must store at least Imax/2T

coulombs of charge, where I is the maximum output current from the dri-
max

ver and T is the rise time of this current pulse.

In the present design the HPA type 0114 diode has a recombination

time of about 125 nanoseconds. This value is actually a function of the

forward current. The effective rise time of the driver current pulse is

about 15 nanoseconds (since the driver output voltage must rise consider-

ably to back bias the diode), and the maximum output current is about 160

milliamps. This gives a stored charge requirement of 2.4 nanocoulombs.

This requirement is met with a 25 milliamp forward current. _ switches

200 milliamps, but some current is absorbed in the diode biasing network,

so the actual word line pulse is only 160 milliamps.

The bias supply to the snap diode must be turned on about 150 nano-

seconds before the driver is activated in order to store the required

charge. Since it is assumed that the supply voltages can be turned on at
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the initiation of a memorycycle, this is a simple arrangement. The delayed

input to the driver stage could be furnished by the central processor. One

disadvantage of the simple resistor biasing network is that it absorbs some

of the driver output current. The input voltage to the word line is several

volts during the word pulse. Thus the driver must furnish enough current to

drop about 12 + 3 = 15 volts across R4. A muchmore efficient method would

be to have a commonemitter driver to bias the snap diode rather than R4.
The arrangement would be similar to the bit line driver. The commonemitter

stage could be driven from the unused side of the differential amplifier.

This circuit modification is sketched in Figure 4.24. Rather than return to

-12 volts, as in the present driver, the emitter can be returned to -3 or -6

volts, thus saving power. The return is to -12 volts in the present circuit

so that R4 can be maximized and thus minimize the driver output absorbed in

R4. Whenthe memorycycle is initiated with the modified circuit, the bias
driver would comeon and charge the diode. The output driver would then be

activated by a delayed pulse. As the driver cameon, the bias driver would

turn off. Operation of both the original and the modified circuit is ex-

plained by the chart of Figure 4.25. It is seen that R3 limits the maximum

output current from the driver since Q2 is operated in a saturated modewhen

ON. Choice of R3 selects the word pulse amplitude.
The rise time of the output driver is important in that a faster rise

time will require less charge stored in the snap diode. The differential

amplifier is never saturated, so the rise time can be estimated accurately

from small signal performance. Fromthe discussion of the sense amplifier

it is known that typical bandwidths for the basic circuit modulewith resis-
tive loads between i000 and 2000 ohmsare between i0 and 20 MHz. From the

well-known relation between rise time and bandwidth for systems with little

overshoot (systems characterized by a dominant simple pole),

BT :0.3
r

we have for a circuit with a i0 MHz bandwidth,

T = 0.3/107 = 30 nanoseconds
r
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Figure 4.24 A modified word line driver
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Similarly, a 20 MHzbandwidth circuit will have a rise time of about 15

nanoseconds. These figures agree with the observed rise time of 20 nano-

seconds for the base waveform of QI" The fall time of the output stage
will showthe effects of base charge storage since the transistor is sat-

urated whenON. The storage time can be minimized by providing a low im-

pedancepath to the base of the output transistor. This is provided by

the emitter follower output of the basic circuit. The maximumdischarge

current that QI can handle is limited by R2. Fall time is thus minimized
by small values of R2. Onthe other hand, R2 absorbs current from QI when

the driver is ON. This current would otherwise be base drive to Q2" Thus

small values of R2 limit base drive to _. A compromisevalue for R2 must
be chosen.

Circuit performance is shownin the photographs of Figure 4.26. A

one nanosecondrise time is achieved with an output amplitude of 160 mil-

liamps. The load for this test was a IN55 diode in series with a 15 ohm

resistor and a two inch wire loop to simulate the word line.

D. BIT DRIVER

Thebit driver must furnish either a positive or negative output

pulse of about 25 milliamps. The exact level is set by the characteristics
of the magnetic films and the transmission lines. The particular circuit

shownin Figure 4.27 delivers 20 milliamps but the circuit topology can eas-

ily deliver 50 milliamps. That is, if resistor values are changed slightly

and power supply levels are increased, more output current is available.
Figure 4.28 showsa photograph of an actual circuit board. The exact output

level is set by RI (for the positive driver) and by _ (for the negative
driver). These would be precision resistors in an operating system. Cir-
cuits delivering larger currents will likely be slightly slower since lar-

ger resistor values have to be used.

Circuit operation will be briefly explained with the aid of the

schematic. As in the case of the word driver_ a basic circuit module drives

an output stage. A logical ONEat the input of either differential ampli-

fier will turn the corresponding driver ON. The second side of the differ-

ential amplifier is taken to -1.15 volts, the reference voltage for emitter

coupled logic. A logical ONEturns the right hand side of the differential
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(b)

Figure 4.26 Output current from the word line driver of Figure 4.22. Part

(a) shows the 160 milliamp pulse. Horizontal scale: 20 nano-

seconds/division. Part (b) shows the leading edge. Horizontal

scale: i nanosecond/division. Vertical scale : 40 milliamps/
divi sion.
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Figure 4.27 Circuit diagram for bit line driver
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amplifier off and Q1 or Q3 on. In turn, either Q2 or Q4 is turned on and

a current pulse appears on the bit line.

The rise time of the basic circuit module was discussed for the case

of the word driver. A similar discussion applies for the bit driver.

Photographs of actual circuit performance are given in Figure 4.29. It

should be noted that the supply voltages must be well bypassed at the cir-

cuit card. This is accomplished on the mother board by low impedance supply

busses over a ground plane. If these supplies are not well bypassed, the

rise and fall times of the circuits will be longer because of the increased

load impedances. In addition there will be more noise on the lines.

The bit driver is capable of delivering closely spaced positive and

negative pulses. Figure 4.30 shows a negative and then a positive pulse.

By bringing the excitation pulses closer together in time, the pulses shown

can be brought together until they cancel each other. No loss in pulse fi-

delity occurs. This is useful in the case of the word driver if it is de-

sired to eliminate the bias resistor for the snap diode. This is a possible

improvement in the word driver and is discussed in the section on the word

driver.

E. HIGH AND LOW GATES

The purpose of the gates is to switch the output pulse from the word

driver to the appropriate word line. The HIGH gates select one of eight

groups of word lines and the LOW gates select the individual lines within

the groups. The input to the gates is a logical ONE from emitter coupled

logic. A basic circuit module is used to amplify and level shift this

pulse. A common emitter output stage is then used as a saturated switch.

The gates can switch up to 200 milliamps.

The schematics for the gates are shown in Figure 4.31. Figures 4.32

and 4.33 show actual boards and identify the components. There are two gates

per board. It will be noted that the circuits are very similar to the dri-

ver portion of the word driver and the positive bit driver. All of the com-

ments on tradeoffs for resistor values and rise time computations hold for

the HIGH and LOW gates. Actual circuit performance is shown in the photo-

graphs of Figures 4.34 and 4.35. It will be noted that waveforms for various

points in the circuit are included. Similar waveforms would be seen in the

word driver and the bit driver.
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F. TIMINGCHART,POWERCONSUMPTIONTABLE,ANDMOTHERBOARD

The timing chart for memoryoperation is a direct consequenceof the

performance capabilities of the individual circuits. Based on the perfor-

manceshownin the figures of this report, the timing chart of Figure 4.36

can be constructed. The length of time that power must be turned on to the

circuits is determined by the biasing requirements of the snap diode in the

word generator. If this diode were driven by a transistor, as suggested in

the word driver section, this biasing period could be reduced to about 50

nanoseconds. This would include the rise time of the snap diode bias dri-

ver. Onthe other hand, if the memorywere to be operated continuously, or

in bursts with manyconsecutive cycles, it would be more economical to use

resistive biasing for the snap diode.

Themaximumrepetition rate is set by the settling time of the sense

amplifier. This settling time can be minimized by lowering the frequency of
the feedback pole. The waveform drawn is based on the performance of the

circuits delivered (with i00 picofarad capacitors).

In summary, the power must be turned on from the time bias is applied

to the snap diode until the bit current has written information back into

the memory. The maximumrepetition rate is set by the time from the initia-

tion of the word pulse to the settling of the sense amplifier. Thus the

maximumrate is set by the 225 nanosecondtime from word pulse to settling

of the sense amplifier. Powermust be supplied for about 250 nanoseconds.

Both of these times can be reduced by the measures indicated above.

A power consumption table is given in Figure 4.37. The average power

consumption is 900 milliwatts at a 200 kHz repetition rate. This is below
the maximumof i000 milliwatts allowed. The additional i00 milliwatts could

be easily "spent" to lower the rise times of the various generators by low-

ering resistance levels and increasing current levels. Somethought has

been given to the problem of turning on and off power to the various gates

and drivers. Becauseof the fast response time of the circuits, no problem

will be experienced with ringing or instability. Oneset of circuits, the

LOWgates, was tested with the power switched on just before the circuit was
activated by the signal pulse. Performance of the low gates is shownin the

photograph of Figure 4.38. There is no difference between the observed cir-

cuit performance under these conditions and under steady state power
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Figure 4.37

POWER CONSUMPTION

Duty cycle is computed on the basis of a 200 kHz repetition rate. Since

power is on for 250 nanoseconds per cycle, the duty cycle is 0.05 or 5%.

Only the sense amplifiers and power gates are not switched on and off.

Circuit Function Number in Memory Consumption per

Circuit

Total Consumption

Power Gate

Sense Preamplifier

Sense Amplifier Out-

put Stage

Word Line Driver

Bit Line Driver

HIGH Gates

LOW Gates

5 25 milliwatts 125 milliwatts

(+3 volts, _6 volts,

-12 volts)

8 60 480

8 20 160

i 0.05 x 1200 = 60 60

8 O.O5 x lO0 : 5 4O

8 0.05 x 42 : 2.i 17

8 0.05 x 35 = 1.75 14

896 milliwatt s
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Figure 4.38 Performance of LOW gates under pulsed power conditions.
Horizontal scale: 50 nanoseconds/division.
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conditions. The 25 nanoseconds between when the power is applied and when

the circuit can be switched by logical signals can be used to charge the

snap diode.

Typical power switches are shown in Figure 4.39. The design assumes

that it would be permissible to use PNP transistors for this switching ap-

plication since only a few are required and they could be fabricated on sep-

arate chips or in a separate isolation region of the chip. Furthermore_ the

performance of these transistors is not critical and low B transistors would

be acceptable. The primary requirement of these transistors is the ability

to handle relatively large currents. Fortunately none of the supplies which

directly furnish output current from the drivers has to be switched.

Commercial integrated circuits were used as much as possible in

this design. Even so, because of the number of extra discrete transistors

and resistors required, the circuits for a completed memory will occupy

about 46 square inches of printed circuit board surface. This may be com-

pared to about 1.8 square inches of memory plane. It should be noted that

if all circuits were monolithic_ as they may be, they would occupy less room

than the memory plane. Although 46 square inches of printed circuit board

surface is not excessive (approximately 7" × 7"), problems of fan-in and

fan-out from the memory plane suggested using small circuit boards mounted

perpendicular to the mother board. If all circuits are on small_ secondary

boards the design is modular and can be changed without changing the large

mother board.

The layout of the mother board is shown in Figure 4.40. Regions are

indicated for each of the circuit types, i.e., LOW gates, HIGH gates, bit

drivers, word driver and sense amplifiers. Each secondary board fits in a

milled slot in the mother board and is held firm by epoxy cement. Tabs are

placed on both sides of the small boards for soldering to the lines of the

mother board. These solder filets offer additional mechanical support. The

entire reverse side of the mother board is a ground plane to keep the imped-

ance of the lines on the mother board low.

Go SUMMARY

The purpose of the circuits effort was to investigate the feasibil-

ity of using an all integrated structure for a thin film memory. It has

been shown that an all integrated circuit is indeed feasible. Circuits
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Figure 4.40 Photograph of  completed c i r c u i t s  and mother board. The 
memory plane i s  not i n s t a l l e d  
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have been demonstrated which perform all required tasks. The power gain-

bandwidth relation for the circuits has been demonstrated. A method of

optimizing the circuits with respect to amplification, power consumption,

and chip area is explained. Possible methods of solving the coupling prob-

lem in multistage linear amplifiers have been listed. The general tech-

nique of using frequency dependent feedback is a powerful method of handling

offsets. Finally_ the entire circuit design makes use of a basic circuit

module. It was interesting to note that this module can handle both linear

and switching operations.
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V. THINFILM MULTIIAYERFABRICATION

A. APPARATUSANDPROCEDURES

1. Film Deposition and Apparatus

Film deposition by evaporation in high vacuum was employed exclu-

sively in this study. Major apparatus and accessories are discussed.

1.1 Vacuum Evaporation System. The primary vacuum system was a

Veeco model VE-775 automatic evaporator. The vacuum chamber is construc-

ted of type 304 stainless steel and is 26 inches in diameter. The system

is adapted to conventional evaporation methods using filaments, boats, or

crucibles. In addition, an electron beam power supply and gun, Veeco model

VeB-6-C, is incorporated for evaporation by electron beam techniques.

Helmholtz coils are positioned outside the vacuum chamber for applying con-

stant magnetic fields up to 60 Oersted during the deposition of magnetic

films. An overhead chain hoist is employed to raise and lower the 200

pound coils. Figure 5.1 is an overall view of the vacuum system.

1.2 Accessories and Techniques. During early film depositions, a

substrate and mask changer manufactured by Edwards High Vacuum, Inc. was

employed° However, several parts associated with the rotational mechanism

of this apparatus were magnetic. These had to be removed for this work,

and only the basic tripod and top support plate of the original changer

were utilized during the major portion of this program. Further modifica-

tions included the construction of (i) source compartments that provided

vapor shielding between two source positions and two substrate positions

and (2) a fixture for supporting, heating, and masking substrates. Insitu

substrate or mask changing features were eliminated in the modification.

Major features are shown in Figure 5.2. During evaporations from filaments

and boats, substrates were supported above the evaporation source at a dis-

tance of 6 inches. Electron beam evaporations were made upward from a mas-

sive copper crucible positioned 8-1/2 inches below the substrate position.

A fixture was constructed to provide substrate support, substrate

heating, and accurate substrate to mask registration. Major details are

shown in the sequence of photographs in Figure 5.3. Three precision pins

mutually register the substrate and transmission masks. The mask holder

mates with a copper plate with the substrate sandwiched in a pressure fit
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Figure 5.2 Evaporation Appmatus Inside Vacuum Chamber 
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between the plate and mask. A spacer ring limits the pressure on the sub-

strate to minimize breakage. Heating of the substrate is accomplished by

heating the copper plate with an auxiliary heater. Rapid cooling is pro-

vided by water flow through a cooling coil attached to the auxiliary heater.

A thermocouple was fixed to the copper plate for continuous monitoring of

the plate temperature during substrate baking and film deposition. While

the copper plate theoretically contributed to uniform substrate heating, 13

its temperature is not necessarily an accurate indication of substrate tem-

perature. As discussed in Section V-B-2.2 for the deposition of Cr-Au

films, there can be a considerable difference between the actual substrate

temperature and that of the copper plate in contact with the substrate.

2. Photo Resist Processing and Apparatus

Equipment for applying, curing, and exposing photosensitive resists

was installed in two separate compartments of an ultraclean box. This in-

cluded a high torque spinner, a hot plate, a vacuum frame and an exposure

lamp. The spinner, model AHT2A-T, was manufactured by Headway Research,

Inc., Richardson, Texas and is capable of speeds to lO,O00 r.p.m. It was

used for applying thin uniform coats of resist. After application, the

resist was cured on a hot plate. A lO0 watt mercury vapor flood lamp, G.E.

type H4JM was used for exposing the resist. A shutter was employed so that

the lamp could be operated continuously. At a distance of 24 inches, the

exposure time for relatively thin coats of resist varied from 1 to lO min-

utes, depending primarily on the type of resist. A vacuum frame was used

to maintain intimate contact between photomasks and substrates during ex-

posure.

After exposure, the resist was developed with appropriate solutions

in pyrex glassware in a fumehood. A final spraying with solvents with a

solvent spray gun aided in obtaining sharp images. Etching of the films

and stripping of the resist images were also accomplished in the fumehood.

Details of the processing for the resists used are given in Appendix G.

3. Substrate Cleaning and Apparatus

Substrate cleaning was by one of the two methods given in Appendix

H. The same apparatus was used for each method. This consisted of a rack

for handling of substrates in batches during cleaning, pyrex jars, hot

plates, blow bottles, a filtered demineralized water rinse, and a trichlor-

oethylene vapor degreaser. The final cleaning station is shown in Figure

5.4.
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The demineralized water rinse contained a Barnstead demineralizing

loop, Model PL-I-C. To this a centrifugal water pump was added for circu-

lating a supply of water through a stainless steel rinse tank. The system

was charged with distilled water, U.S.P. grade. The rinsing tank was in-

stalled in a clean box and was covered with a lid when not in use. After

operating for a few minutes, the resistivity of water reached a level of

15 to 18 megohms.

4. Bondin_ and Micromani_ulatin_ Apparatus

Two bonders were available for small lead bonding. One was for

ultrasonic welding and the other for thermocompression bonding. The ultra-

sonic welder is the Model W-260-A manufactured by the Sonobond Corporation.

The thermocompression bonder was constructed by Georgia Tech. A micromani-

pulator, Dumas Instrument Company Test Station Model D-300, was used for

micropositioning in testing and bonding.

5. Measurements and Measurement Apparatus Employed in Memory Fabrication

Discussed are the measurements, techniques, and apparatus used for

establishing process control in the deposition of films and routine meas-

urements used during the fabrication of multilayer film structures.

5.1 Film Thickness Measurements and Apparatus. A constant devia-

tion spectrometer, Hilger and Watts model D-186, was used in conjunction

with an interferometer to measure film thickness. The interferometer is

equipped with a white light source and operates on the prinicple of multiple

beam interferometry 14 to produce fringes of equal chromatic order. Design

is based on that described by Scott, McLauchlan and Sennett. 15

Thickness measurements were made to establish deposition rates of

SiO evaporation sources so that timed depositions at predetermined rates

could be made to evaporate to a desired thickness. Also, thickness meas-

urements were made to calibrate sources for the evaporation of permalloy

films to know thickness.

5.2 Routine Fabrication Measurements. In the fabrication of multi-

layer film memory structures, resistance, capacitance, and magnetic meas-

urements were made to determine the electrical and magnetic parameters of

deposited films; these were made selectively at successive stages of deve-

lopment and aided in making corrective adjustments in the overall experi-

mental process of building a complete memory. During the evaporation of
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metal films, resistance monitoring wasused to deposit to designed resis-

tivity values. In addition to electrical and magnetic measurements, spec-

imens were optically examinedwith stereomicroscopes during routine

inspections of the fabrication process.

The resistance and capacitance measurementswere madewith an imped-
ance bridge, General Radio Model 1650-A.

5.3 Memory Plane Test. The concept of the memory plane test is to

measure the electrical characteristics of a variety of film and strip line

configurations and fabrication parameters in actual memory pulse operation.

Simple memory planes are fabricated by multilayer deposition in an identi-

cal sequence to the final memory. The patterns for this program consist of

a series of 3 sizes of word lines and bit lines. There are three sets of

word lines; the first consists of three 5 rail lines with 5 rail separation;

the second has three lines i0 rail wide with i0 mil separation; and the third

has three 20 mil lines with 20 mil separation. The array has three sets of

bit lines as follows: iO rail wide with i0 rail separation, 20 rail wide with

i0 mil separation, and 40 mil wide with 20 mil separation.

The simple memory plane is important to the work of this contract

since it provides data on creep stability, signal levels, and drive require-

ments for a wide range of geometric configurations. It is also a simpler

structure than the final memory plane and, hence_ serves as an evaluation

platform for fabrication studies. In fact_ most of the fabrication work

done under this contract was with this simple plane structure.

The test equipment, specially designed for pulse test of the simple

memory, are a test fixture and a logic generator.

Test Fixture: In this apparatus, the simple memory plane is

placed into a recessed substrate holder and a special printed circuit over-

lay is positioned to make contact with tabs on the substrate. Current pul-

ses and sense signal are transmitted to and from the substrate via trans-

mission lines on the overlay. The original copper overlay was gold-plated

to decrease contact resistance between transmission lines and tabs on the

substrate. Tests showed that all 18 contacts between the substrate and

the overlay can be simultaneously electrically connected with each contact

resistance less than 0.i ohms. By using this test fixture a simple memory

plane can be pulse tested without a single soldering operation.
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Lo6ic Generator: The logic generator, which develops program-

mable sync pulses for memory plane evaluation, was designed and built on

Radiation Incorporated's logic simulator kit Model 59105. The clock in the

system was designed to operate at a pulse frequency of lO0 kHz. The logic

generator contains eight sequentially pulsed channels, any two of which can

be expanded to have more than one pulse in each cycle. The advance of chan-

nel sequence can be controlled either automatically or manually. When auto-

matically controlled, the number of pulses in each expanded channel in each

cycle is also automatically controlled. In the manual mode, the number of

pulses in each expanded channel is manually controlled.

The eight channels are sufficient to program any sync pulses required

to test the simple memory plane. The output pulses from the simulator kit

are amplified by a set of transistor line drivers and then connected to the

sync input terminals of current pulsers. These pulsers in turn supply the

drive currents to the memory plane test fixture. Figure 5.5 shows the set-

up of the simple memory plane test equipment.

B. FABRICATION OF MULTILAYER THIN FILM MEMORY PLANES

The studies discussed in this section were directed toward the pri-

mary objective of developing a process for fabricating a multilayer film

memory plane. Two potentially feasible processes were initially designed.

These differed primarily in choice of materials. Before examining the pro-

cesses, certain preparations and preliminary studies were made to establish

a starting point. Major efforts were then directed to adapting the proces-

ses to fabricating a memory. Several major problems ensued; most of these

were systematically solved or eliminated so that much general progress was

made toward meeting the objective. It is expected that the few remaining

problems can be solved with minimal effort.

i. Initially Proposed Processes for Fabricating Memory

Design and the functional characteristics of the multilayer film

memory plane are discussed in Section II. The word lines are 0.010" wide

and on 0.020" centers_ and the bit sense lines are 0.020" wide on 0.030"

centers. These were arrayed in a common plane at right angles to each

other to provide a total of 512 bits with 0.060" centers along the word

lines and 0.020" centers in the direction of the bit lines. It was desir-

able that a process for fabricating the memory meet the following general
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criterion:

(i) Be economical,

(2) Be capable of immediate application,

(3) Be capable of attaining the greatest feasible storage density

with permalloy or similar films in a planar array of storage

elements, and

(4) Be compatible with monolithic integrated circuit technology.

i.i Substrate Materials and Other Design Features. To support the

film memory, four materials were considered for substrates. These were

doped silicon, fused quartz, Corning type 7059 glass, and non-corrosive

soft glass microscope slides. Silicon was selected as a first choice of

substrate materials for the final memory model so that memory fabrication

would be most compatible with monolithic integrated circuit technology.

Silicon substrates with chemically polished surfaces and doped for a low

resistivity in the range 0.0004 to 0.001 ohm-cm were ordered. At first,

it was thought that possibly the low resistivity silicon wafer could serve

as a ground plane for the memory. Subsequent theoretical analysis however

indicated the desirability of a low resistance metal film ground plane.

This was included in the processes designed for experiment. It so happened

that the vendor failed to supply the silicon wafers on schedule, and the

order had to be cancelled. Other substrate materials were then selected in

order to pursue process development. Polished fused quartz was selected as

the second choice for substrate material because of its similarity to pass-

ivating films of SiO 2 on silicon and its resistance to breakage with exten-

sive handling during fabrication. Glass substrates, Coming type 7059,

were obtained as a third choice. All of the process studies were made with

fused quartz and glass substrates; and, in the final process analysis, glass

was actually selected over fused quartz due to certain difficulties experi-

encedwith the quartz. These difficulties are discussed subsequently.

A substrate size of 1.5" x 1.25" x 0.025" was selected for the

memory. This size was slightly larger in width than that needed for the

actual storage matrix. The extra substrate area was for film buss lines

and selection diodes. General Instrument type 10-XHIO0 beam iead diodes

were used. These are bonded to the mating buss and word lines. Figure 5.6

shows one of the diodes bonded to mating lines. Inclusion of the buss lines

and selection diodes on the substrate with the memory resulted in a neat
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hybrid package that simplified interconnections from the memory to the

driving and sensing electronics.

1.2 Process A. A general outline of process A appears in Table 5A.

Films required to fabricate the hybrid package are listed in the first ver-

tical column in order of deposition. The first seven layers make up the

memory matrix; whereas, the last three layers resulted from including the

buss lines on the substrate with the memory. Details on the respective

film layers are listed horizontally in the table. As indicated in the ma-

terial column, insulating layers were SiO films; the ground plane and bit

lines were aluminum films; and the word lines and buss lines were bilayer

films of gold over chromium. All of the films were deposited by evapora-

tion in high vacuum. This is indicated in the third column where the gen-

eral design specifications of the respective film properties are given also.

During the evaporations of each film, contact transmission metal masks were

employed to restrict the deposit to definite areas or to define a line pat-

tern. A total of eight difference metal masks were required to deposit all

of the film layers. The film patterns were defined completely with the con-

tact metal masks for six of the layers; these were the SiO layers, the 8th

or adhesive layer (Cr), and the buss lines (Cr-Au). However, the dimen-

sional tolerances and line resolution specified for the ground plane, stor-

age film, bit lines, and word lines in the memory design could not be ob-

tained with contact metal masks. This was demonstrated in a series of

experiments designed to determine transmission mask resolution for the type

of masks employed° To insure adequate dimensional tolerance and resolution,

the decision was made to use high resolution glass photomasks and to photo-

engrave precision patterns of these films. To photoengrave a film, the sub-

strate was removed from the vacuum system, and the film pattern was etched

before proceeding to deposit subsequent films in the layered structure.

After photoengraving, the substrate was cleaned prior to deposition of the

next film in the sequence. Where applicable, this post deposition fabri-

cation is indicated in the last column of Table 5A.

After depositing each of the ten major film layers, the vacuum

chamber was opened for moving the substrate to a different source position,

for changing metal masks, or for photoengraving; however, cleaning of the

substrate was not required unless photoengraving was involved. These in-

terruptions in the vacuum processing were advantageous in many respects
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since each film could be inspected before proceeding to deposit subsequent

films in the sequence.

1.3 Process B. The general procedures for process B were similar

to process A. The primary difference in the two processes was that in pro-

cess B the ground plane and bit lines were trilayer metal films of Cr-Au-Cr

instead of aluminum films as in process A. The notation Cr-Au-Cr is used

to indicate that a gold film was sandwiched between two films of chromium.

Deposition was similar to that of the Cr-Au for word lines in process A;

that is, the chromium films were from 500 to i000 angstroms thick, and the

gold was deposited for a sheet resistivity of about 0.015 ohm per square.

The chromium and gold were deposited successively from independently con-

trolled sources in juxtaposition.

1.4 Comments on the Proposed Processes. At this point, there may

be some questions with regards to the materials and methods that were selec-

ted for the proposed processes, and some explanation is in order. It was

stipulated that vacuum evaporation techniques would be employed to fabri-

cate the film layers of the memory. From a fabrication standpoint, several

problem areas were anticipated. Paramount among these were (i) mechanical

instability of the differing materials combined in a multilayer structure

of so many film layers, and this being compounded because of the relatively

large thickness of eight out of ten layers to be deposited by evaporation,

(2) shorting between the extensive area of metal films and the numerous

metal film crossovers to be insulated, (3) the possibilities of destroying

magnetic properties of the storage film during the film processing follow-

ing its deposition, and (4) interconnections between the memory and its

driving and sensing electronics. There was considerable conflict in making

a selection of materials. Hardly any one metal film could be selected for

the conductive films with properties that satisfied best the conditions

presented by all four problem areas; as a consequence_ considerable com-

promising between these problems and other desired features was made with

near certainty that some modifications of the processes would be required.

Several properties of silicon monoxide make it nearly an ideal

choice for the insulating films in the memory. The most attractive of these

are its ease of evaporation, its superior adherence to most metals and to

glass and quartz_ its dramatic smoothing effects on surfaces when deposited

sufficiently thick, its potentially high dielectric strength, its relatively
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low dielectric constant, and its anhydros nature and general inertness. A

minimumthickness of about 2 _ was required for the Si0 films in order to

limit the capacitance between the various metal films. To provide uniform

dielectric films especially with reliable d.c. insulation at the numerous

conductor crossover points by evaporation was considered a major problem,

and to a large extent this would determine the necessary thickness regard-

less of the dielectric material selected. The problem was complicated by

the fact that the conductive films were relatively thick and their edges

were sharply defined as a result of photoengraving. To mask these effec-

tively, it appeared desirable to design a broad evaporation source. This

was donewith apparent success. The source is discussed subsequently in
the section on incidental studies.

The selection of aluminum for conductive films in process A was based

upon several factors, the most important being its low resistivity, good
adherence to SiO, and relatively low stress on the SiO films. The latter

feature was considered important for minimizing shorts between metal films.

Since aluminumcan be anodized, anodization of aluminum films before depo-

sition of the Si0 in order to improve d.c. insulation at crossovers was an

alternate choice; however, this was not resorted to in the subsequent work.
Gold was selected for the word line in order to assure a reliable bond be-

tween the diode beamleads and the line. The choice of gold also elimi-

nated the possibility of contact resistance at points of direct contact be-
tween the successively deposited films for word and buss lines that would

unavoidably occur with surface oxide formation on aluminumword lines. The

adherenceof gold to SiO was considered insufficient to meet stability re-

quirements and the stresses of bonding, and a thin layer of chromiumwas

used to provide adequate adherence at gold to Si0 interfaces. This re-

sulted in the bilayer Cr-Au films and trilayer Cr-Au-Cr films in processes
A and B.

Therewere somereservations concerning process A where the alumi-

numfilm bit lines are in direct contact with the permalloy storage films.

It was feared that the two films would alloy and destroy the magnetic pro-

perties of the permalloy, and this did occur in subsequent work. This was

the primary reason for designing two processes. Cr-Au-Cr films were selec-
ted for bit line in the second process, and in order to minimize the number

of different materials, chromiumand gold were selected for all of the metal
film layers. Choosing the chromium-gold system for all of the conductive

158



layers also resulted in a greater flexibility for making connections from

terminals of the hybrid memory package to the mother board since soldering

as well as ultrasonic or thermal compression bonding techniques could be

employed. In addition, hot sulfuric or chromic acid could be used to ob-

tain superior cleaning of chromium-gold films after photoengraving.

Primarily, the discussions so far have pertained to processing the

512 bit memory. Actually masks were prepared for two different planes.

The pulse test plane of 27 bits was designed for dete_nining preferred line

widths and spacings for the bit and word lines and dielectric film thick-

ness; this is referred to as the Simple Test Plane to make distinction be-

tween it and the more complex 512 bit array. It has been previously des-

cribed in Section A-5.3. Besides bit density, the basic difference between

it and the larger memory was that the simple plane consisted of only the

first seven film layers of process A as described in Table 5A. The buss

lines and switching diodes were not included on the simple test memory.

Most of the process development was done using the simple memory structure

following the procedures outlined for fabricating the 512 bit memory.

An "insitu" process would be ideal for fabricating such a compli-

cated film structure. In such a process, the vacuum apparatus would be

designed to interchange contact masks and substrates and select evaporation

sources so that the memory could be fabricated by successively depositing

the various film patterns in registration in a single evacuation of the

vacuum chamber. The complications introduced by the photoengraving in the

proposed processes would be eliminated resulting in a cleaner process re-

quiring less time for completion. However, the feasible bit density attain-

able with transmission metal masks in an insitu process was considered to be

too low. It thus seemed profitable to pursue the more complicated process

which ultimately will allow for a much greater bit density.

Certain general principles were considered necessary to fabricate

a reliable multilayer film memory; these guided the approach to effecting

the processes. It was decided that all film evaporations would be made at

pressures in the 10 -5 to 10 -7 torr range. Substrate temperatures during

deposition had to be sufficiently high to relieve as much stress within and

between the various film layers as possible. This was particularly true for

SiO films which will reticulate if deposited at temperatures much below

250 ° C. It was known that the desired magnetic properties for the permalloy
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films could be obtained for films deposited on substrates at sometemper-

ature in the range of 300°C to 450°C. Thus, the plan was to establish a

preferred substrate temperature for the particular vacuumapparatus used

to deposit the permalloy film. All film depositions before the permalloy

would be madeat or above this substrate temperature; all film depositions
after the permalloy would be madeat substrate temperatures equal to or

preferrably below the permalloy temperature. It was not known for sure if

applied magnetic fields would be required to prevent excessive degradiation
of the magnetic parameters with heating during the film depositions follow-

ing the permalloy. Amongother things, post-deposition annealing effects

on the permalloy had to be determined. High rate evaporation sources were

desirable for depositing the thicker films, and considerably attention was

given to source designs for evaporating the various materials. Preferred

photoengraving techniques for the particular combinations of films had to

be developed also. Thus, many details had to be resolved in order to deve-

lop a satisfactory process; the results of these studies are discussed in

the following paragraphs.

2. Incidental Studies and Preparation for Multil_ver Film Memory

Fabrication

The apparatus and general procedures for film fabrication are dis-

cussed in Section V-A. In this section, vacuum evaporation and other pro-

cess studies preceding efforts to fabricate a complete memory with the

proposed processes are discussed in detail. Included also are discussions

on the artwork and masks for memory fabrication and a study on the resolu-

tion of transmission metal masks. Glass substrates were used for all of

the exploratory film studies in this section.

2.1 Development of Evaporation Source for SiO. The metal films of

the memory requiring insulation were about 2 _ thick, and the edges of the

numerous crossing paths (crossovers) that required d.c. insulation were

sharply defined as a result of photoengraving. As discussed previously,

evaporated SiO films were selected for insulation. Highly directional

sources are unsatisfactory for evaporating the SiO on stationary substrates

since shadowing effects occur at the steep edges of the metal films. Hence

SiO films of excessive thickness, on the average, are required to obtain

adequate insulation at the crossovers. Since deposition apparatus was de-

signed to accommodate a stationary substrate, the easiest method of mini-

mizing the shadowing effects was to design a sufficiently broad source to

evaporate the SiO from a fixed position.
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Graphite cloth was used to construct a broad source for evaporating

SiO. Its resistivity is high comparedto suitable refractory metals; thus,
relatively low currents were required for 12]{ heating and a broad source can

be operated without overloading the current feedthrus of the vacuumsystem.

In addition, the well knownejection ("spitting") of the SiO particles dur-

ing heating is eliminated by enclosing SiO particles within densely woven

cloth. Union Carbide grade WCBgraphite tape 4 inches in width was selec-

ted for constructing the source. The sheet resistivity of this grade is

approximately ½ ohmper square. A length of 7 inches was folded as indica-

ted in Figure 5.7a to form a cavity. This was filled with SiO particles,

and the two open ends were terminated with electrodes so that the planar
area of the source exposed to the substrate was 1.5" x 1.5". Tantalum ter-

minations were used since the graphite cloth operates at near full tempera-

ture right up to the electrode connections. A molybdenumradiation shield

limited heat radiation from the sides and bottom of the source. Figure

5.7b is a photograph of the completed source structure. Whenfully loaded,
the source held about 20 grams of SiO particles ranging in size from 20

meshto ¼ of an inch in breadth, and a new graphite element was installed

with each new charge or renewal of the SiO charge.

Evaporations of SiO were madewith the two source to substrate geo-

metries of Figure 5.8 to comparethe uniformity of films deposited. Sub-

strafe temperatures ranged from 300°Cto 450°C and all of the films were

strongly adherent. For both of the "A" and "B" source to substrate geome-

tries_ film thickness varied 20 percent over an area of 1.5 inches in dia-

meter. The variation in each case was dependent on the radius with respect

to the center of the substrate but in an almost opposite sense as illus-

trated in Figure 5.9. The primary difference in the geometries was that

for source "B" the source to substrate distance is shorter and the 1-5/8"

x 1-5/8" aperture introduced a stopping effect.

Figure 5.10 showsthe dependenceof the deposition rate on source
current for source "B" fully charged with SiO. The high deposition rate of

4000 angstroms per minute obtained at a source current of 75 amps was very

satisfactory since the 2 _ films required for the memory could be deposited

in 5 minutes. Most of the literature reports much lower deposition rates

for high quality SiO films. To insure that the insulation quality of the

SiO was satisfactory at the higher rate of deposition, a few thin film

capacitors were fabricated with aluminum film plates. The SiO dielectric
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was evaporated at the 4000 angstroms per minute rate at a substrate tem-
perature of about 350°C. Each capacitor had an area of one square centi-

meter, and the dissipation factors ranged from O.O1to 0.02 for capacitance

values of about O.O1inf. This was considered quite good so the source was

considered satisfactory to evaporate SiO films for the memory.

A load of 20 grams of SiO was depleted in a time equivalent to

about 2.5 hours of operation at 75 amps. An accurate calibration of the

change in evaporation rate with extended use was not obtained. However,

it was determined that the rate after evaporating for the equivalent of 1

hour at 75 ampswas about double that obtained initially at full load. In

actual use, timed evaporations could be madeto deposit to an approximate

desired thickness until the thicknesses of the films deposited totaled about
70 to 90 _ with the Source "B" geometry. Thereafter, the evaporation rate

of the source dropped sharply, and a new graphite element and SiO load were

required.

2.2 Evaporation Sources and Methods for Aluminum and Chromium-

Gold Films. Except for the ground plane, all of the conductive

films (bit, word_ and buss lines) crossed the edges of previously deposited

films. In order to minimize shadowing effects at the edges of previously

deposited films_ broad evaporation sources were desirable. This condition

was simulated during memory fabrication by evaporating simultaneously from

two tungsten basket or three tungsten boat sources, respectively, for alumi-

num and chromium-gold. Other methods of evaporating aluminum were tried

and rejected. A sheet resistivity in the range of O.O1 to O.015 ohms per

square was desired for the conductive films. The manner in which this was

achieved for the aluminum and chromium-gold films is discussed in the fol-

lowing paragraphs.

Several attempts were made to evaporate aluminum from a copper

crucible with a broad beam electron beam gun. This proved to be diffi-

cult. Before reaching the evaporating temperature range, outgassing of

the aluminum jettisoned the melt from the crucible. This occurred even

after long periods of outgassing so other methods of evaporating aluminum

were sought.

It was desirable that the aluminum source have a large capacity so

that successive depositions could be made without reloading or changing

sources after each deposition. Other work 16 at Georgia Tech indicated

that boron nitride crucibles could be used for large capacity aluminum
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sources. Several crucibles were machined from 3/8" O.D. boron nitride

rod. The overall length of these was 1.5 inches, and a 3/16 inch dia-

meter center bore to a depth of 1.25 inches formed the cavity. The out-
side of the crucibles were threaded for a helical tantalum wire heater.

A few turns of the helix extended above the mouth of the crucible to min-

imize migration of molten aluminumover the mouth of the crucible. A

rather complex procedure had to be followed during melting and evapora-
ting the aluminumto prevent migration of the aluminumout of the cruci-

ble mouth and over the outside walls; even then, the maximumdeposition
rate that could be obtained from a single crucible was i000 angstroms per

minute for a source to substrate distance of 8 inches. In addition, the

life of the crucibles were shorter than expected due to the occurrence of

cracks in the walls after a few evaporations. This permitted molten alum-

inum to migrate through the walls and destroy the tantalum helix. In

general_ the crucibles were unsatisfactory for the intended purpose.

The evaporation source finally selected for aluminumwas a pair of

commercially available stranded tungsten baskets, R.D. Mathis type BI2A-3X
.025W. These were installed in the vacuumchamberat a distance of 6 in-

ches below the substrate with the two baskets connected in parallel across

a current source and physically separated approximately 1.75 inches. To

calibrate the source, a series of films were deposited by completely evap-
orating various lengths of 0.010 inch diameter aluminumwire (99.999_

purity) and determining the sheet resistivity of the films. The wire

length was equally divided between the two baskets. For these films, the
copper plate substrate heater discussed in Section V-A-I.2 was maintained
at 350° C. A film resistivity of 0.013 ohmsper square was obtained for

the complete evaporation of 20 feet of wire for an evaporation time of 2

to 3 minutes° In evaluating process A, all of the aluminum films were

deposited by evaporating 20 feet of 0.010 inch diameter wire.
Tungsten boats, R.D. Mathis type S8A-.OO5W_were selected for evap-

orating chromium-gold films. For the gold, two of the boats were installed
in the vacuumchamberat a distance of 6 inches below the substrates. The

sources were connected in parallel across the current source and physically

separated 1.75 inches. A third boat for evaporating chromiumwas centered
about i inch below these and connected to a second current source.

To establish the rate of deposition for the chromium source_ the
boat was filled with vacuumoutgassed chromiumgranules (99.9_) of
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approximately 3 to 4.5 mmin breadth. Thickness measurementsindicated

that a deposition rate of 600 angstroms per minute was obtained at a

source current of 150 amps. In subsequent work, evaporations were made

at this source current using the established rate to determine the time

for depositing to a desired thickness.

For gold over chromiumfilms, the thin chromiumfilm was deposited

first to a thickness in the range of 500 to lO0 angstroms, and after a

brief interruption of about 30 seconds the gold was evaporated. Resistance

monitoring was used to makecontrolled depositions to the target resisti-

vity of 0.O10 to 0.015 ohmper square. The contribution of the relatively

thin chromiumfilm to the resistivity of the bilayer film was insignifi-

cant. A series of gold over chromiumfilms were deposited to the target
resistivity with the copper substrate heater maintained at 350° C and the

source current adjusted for an evaporation period of 12 minutes. However,
the temperature of the source was too high, and excessive outgassing caused

somespitting of the melt. In addition, the surface of these films were

dull in appearance (agglomerated) which indicated that the substrate tem-

perature was considerably higher than that of the copper substrate holder.

To eliminate spitting of the gold the source temperature was de-

creased for an evaporation time of about 25 minutes for film resistivities

in the range of 0.OlO to 0.015 ohmper square. With the copper substrate

holder (see Figure 5.3 and Section V-A-1.2) maintained at 350°C during these

longer depositions, the outer surface of the gold was agglomerated to the

extent that in someinstances it appeared black. For this to occur, the
substrate temperature was probably near or in excess of 500°C. Thus, the

temperature of the copper plate heater in contact with the substrate could

not be dependedon for an accurate indication of substrate temperature

during the extended gold evaporations. Reducing the temperature of the

copper plate to 200° C during gold evaporations eliminated the agglomera-
tion. The procedure followed in practice was to heat the substrate to 450°C

or 350°C for cleaning and then cool to 200°C for depositing the Cr-Au.

2.3 Permalloy Film Studies. One of the first objectives was to

determine the evaporation method and optimum evaporation parameters for the

permalloy films since these would limit to some extent the deposition para-

meters, especially substrate temperature, of other films of the memory. As

evidenced by the variation of data found in the literature, it is necessary
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to optimize deposition parameters according to a particular system since

temperature measuring and evaporating techniques differ from one installa-

tion to the next. In these studies the vacuumapparatus of Figure 5.1 was

employed. The Helmholtz coils used for applying a magnetic field during
film fabrication were positioned outside the vacuumchamberso that the

direction of the applied field was approximately parallel with the earths

field. All magnetic data on the films were taken on the Kerr effect hys-

teresograph_ and dispersion measurementswere madeby the conventional
cross field technique.

Electron beamevaporation was the first method examinedto evaporate

permalloy. In these experiments, the permalloy was evaporated from a cool
copper crucible with a crucible to substrate distance of 8.5 inches. The

first difficulty experienced was nonuniformity of the films due to electron

and/or ion charge effects at the substrate surface during evaporation. The

nonuniformity was observable as a characteristic spot pattern of greater

transparency than remaining portions of the films with size amdshape that

were dependent on the geometry of the transmission metal maskused during

evaporation. These effects were eliminated by positively biasing a collec-
tor ring positioned near the front surface of the substrate. Uniform films

were obtained with the ring biased at +300 to +600 v.d.c, with respect to

the substrate holder and baseplate. At elevated substrate temperatures
near 450°C, spot patterns did not occur in the absence of the biased collec-

tor ring. At these temperatures, apparently the resistance of the soft

glass substrates was sufficiently low to prevent the surface from becoming

charged.

The maximumdeposition rate obtained during the electron beam

studies was 300 to 500 angstroms per minute at the stated crucible to sub-

strate distance. Increasing the beampower to increase the rate was un-

successful due to excessive outgassing which caused spitting or ejection

of the melt from the crucible. Higher rates of deposition were desirable;

therefore_ this method of evaporating the permalloy was eliminated from
further consideration.

A series of permalloy films was fabricated with tungsten basket

sources (R.D. Mathis type BI2A - 3 X .030 W). The source to substrate dis-

tance was 6 inches and glass substrates were used. Measurementsof Hc, Hk,

50_ dispersion angle (_50), and skew (B) as a function of substrate temper-
ature and applied field strength were made. The effect of SiO smoothing
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layers was also investigated. Included in these studies were some23 film

samples. Thesewere fabricated before the substrate holder of Figure 5.3

was available, and somedifficulty was experienced in accurately reproducing

substrate temperatures. As a result, the data were scattered; nevertheless
a numberof valid conclusions were obtained.

First, a substrate temperature corresponding to that of a substrate
in contact with a metal plate at 425°C appeared desirable in order to achieve

low dispersion with reasonable Hc/H_ ratio. At this temperature, typical

values of Hc, He/Hk, and _50 were 2 oe, 0.6, and 0.7°, respectively.
A second conclusion drawn from these data was that an applied field

during deposition of 27 Oersted was satisfactory. The data, taken for an

applied field range of zero to 60 Oersted showedincreasing dispersion with

decreasing field and very large data spread at or below 13.50ersted, indi-
cating poor reproducibility. As the field was increased to 60 Oersted the

dispersion decreased_but the Hc/Hk ratio also decreased. A satisfactory

compromisebetween low dispersion and high Hc/Hk was obtained for a field
strength of 27 Oersted.

Evaporation history of a basket had a significant influence on film

properties. After 4 or 5 evaporations in succession from the samebasket,

the film dispersion increased to undesirable large values. It was observed

that the rate of evaporation increased as the number of evaporations were

madefrom a single basket increased. The cause for this was that during

each evaporation a small portion of the permalloy charge alloyed with the

basket. This caused the surface of the tungsten to increase in roughness

with successive evaporations. Accordingly, the basket temperature had to

be increased above the melting point of the permalloy before melting

occurred. The evaporation rate of permalloy increases rapidly at temper-

atures above its melting point, and the temperature required after about

5 evaporations was so muchgreater than the melting point that once the
permalloy began to melt the whole charge was essentially flash evaporated.

However, with an unused basket, the permalloy was melted at a basket tem-
perature near its melting point. A somewhatslower wetting action

occurred, and the basket temperature was then raised slightly to complete
the evaporation in about 1 minute. It was not determined whether the

effect on the dispersion was one of changing film composition or the re-

sult of an evaporation rate change; however, in subsequent work, a maximum

of two evaporations were madefrom a single basket to avoid the effects.
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Remarkable effects of an aluminumground plane and SiO smoothing on
H and dispersion were also _ote_ in these data. A composite structure was

C ....

formed where part of the permalloy film was on SiO over glass and the rest

was on SiO over aluminum on glass. H values of 1.4 and 1.80ersted were
C

obtained, respectively, for permalloy on substrates of SiO over glass and

SiO over aluminum on glass; the corresponding dispersion (_50) was 0._ and

0._. Hence, the dispersion for the SiO over the aluminum ground plane was

approximately twice that for substrates of SiO on glass. The value of 1.4

Oersted for the permalloy on substrates of SiO on glass was also lower than

the value of 20ersted obtained for plain glass substrates. For these con-

ditions, Hk remained constant at about 3.60ersted. In this experiment, the

thickness of the aluminum and the SiO were about 2 _ each. Eventhough the

surface of the ground plane was rougher than that of plain glass, it was

apparent that with sufficient SiO over the ground plane, magnetic parameters

equal to or better than those for permalloy on plain glass substrates were

feasible.

Magnetic properties of permalloy films deposited with a tungsten

basket source and the substrate holder-heater-masking fixture of Figure 5.3

as a function of the temperature of the copper plate in intimate contact

with the substrate were determined. These results verified those previously

discussed. The characteristics observed are plotted in Figures 5.11 and

5.12, respectively, for constant applied fields during deposition of 27 Oe

and 40 Oe. Immediately following the evaporations, the applied field was

reduced to zero and the specimens were annealed 15 minutes at their respec-

tive deposition temperature. They were then cooled to room temperature in

about i0 minutes. Thus, there was no applied field during annealing or

cooling. Corning type 7059 glass substrates were employed. The films were

deposited to a thickness of about 525 angstrom units by evaporating a per-

malloy composition of 81_ nickel and 19_ iron at a pressure of about i x 10 -6

tort. Rectangular in shape, each film measured 1.5 inches by 1.25 inches.

The area of each film was scanned with the Kerr apparatus to determine min-

imum and maximum values of Hc and _.

The first series of permalloy films prepared with the substrate

holder of Figure 5.3 are represented in Figure 5.11. For the temperature

range of 30 to 500°C, Hc values ranged from 2.4 to 6 oe; Hk values ranged

from 4.5 to 6.2 oe. Typically H varied by as much as a factor of 2 over
C
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the film area. However, for the greater portion of the film area, H
C

values were within the hashed area of Figure 5.11. It can be noted that

minimum He values decreased in a smooth manner with increasing temperature

for the temperature range tested; whereas, the maximum H values did not
C

behave as orderly. Minimum Hk values occurred near 400°C. The Hc/H k ratio

of Figure 5.11 is plotted for the corresponding hashed H region.
c

For the specimens of Figure 5.11, a definite pattern in the varia-

tion of Hc was noted. This pattern persisted in a film deposited without

an applied field. It appeared that somehow an extraneous magnetic field

was affecting Hc during deposition. The Edwards microcircuit jig used to

support the substrate during deposition was examined thoroughly to deter-

mine if any parts in the vicinity of the substrate were magnetic. A few

parts were found to be slightly magnetic. The apparatus was stripped of

all such parts. After this, measurements of magnetic field strength in

the substrate position with a Gauss meter indicated no significant extran-

eous fields and that the applied field was uniform over the substrate area.

Subsequently, another series of permalloy films were prepared. These are

represented in Figure 5.12 and were fabricated similarly to those of Figure

5.11, except, the applied field was 40 oe. Specimens deposited at 350 to

400°C had only a small variation in H . Those films deposited at lower
c

temperatures had variations similar to the earlier films. An Hc/Hk_. ratio

of about 0.6 was obtained at substrate temperatures in the range of 350 to

400°C, and the corresponding sum of the dispersion and skew was less than

+3 degrees.

The permalloy studies permitted certain definite conclusions for

testing the initially proposed processes. These were that satisfactory

permalloy films could be fabricated by evaporating from a tungsten basket

on SiO coated substrates heated to 450°C with an applied magnetic field of

40 Oersted, and that during a 15 minute annealing period at this tempera-

ture and a subsequent cooling period of i0 minutes an applied field was not

necessary. The inference from the latter was also that a field need not be

applied during subsequent film fabrication if the substrate holder tempera-

ture was maintained below 450°C.

For memory fabrication, a permalloy film thickness of 750 angstroms

was selected. A series of evaporations was made to calibrate the tungsten

basket for the substrate distance of 6 inches. Since the permalloy in

stock was in the form of 0.020 inch diameter wire the calibration was made
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for film thickness per unit length of wire evaporated. The result was

230 A/in. for the evaporation of i to 4 inches of wire. From this cali-

bration, the thickness of the previously discussed permaiioy films was

estimated at 525 angstroms.

2.4 Photoen_ravin_ of Films. Photo resist processing apparatus

that was available for photoengraving are discussed in Section V-A-3. The

equipment was set up for this program; suitable photo resists, techniques

of processing the resists, and etching solutions were determined for

photoengraving films of aluminum, permalloy, and chromium-gold.

The Eastman Kodak Company, in Kodak Publication No. P-7, recommends

KMER for use on nickel-base magnetic alloys, stainless steel, and steel.

Thus, initial efforts were devoted to photoengraving of all the metal films

using KMER as the resist.

KMER is a negative working resist. The process empirically arrived

at for the processing apparatus available for applying, curing, exposing,

developing, and removing KMER is discussed in detail in Appendix G. It was

tested and found satisfactory for aluminum and chromium-gold films; how-

ever, difficulty was encountered in effectively using KMER for photoengrav-

ing permalloy. The J-lO0 stripping solution, used to remove the resist after

etching, dissolved the permalloy films. Of the more effective solvents and

commercial solutions available for removing the resist, it was feared that

these too, if effective, would probably attack the permalloy. Thus, the most

promising approach appeared to be to select a different resist for permalloy.

Resist type AZ-III, a product of Shipley Company, Inc., was purchased

for testing. It is a positive working resist so that exposed resist is dis-

solved in the developer. Also the unexposed resist is readily removed with

acetone. Thus, either of these two methods can be used to remove the re-

sist after etching; that is, the resist image, which is unexposed resist,

can be removed with acetone or it can be exposed after etching and removed

with developing solution. Processing techniques recommended by the vendor

were followed to develop an empirical procedure for using the resist. The

developed procedure is discussed in detail in Appendix G. The resist proved

to be very satisfactory for masking permalloy films during etching, and both

methods of removing the resist were effective and nondestructive.

The primary advantage of KMER is its superior resistance to attack

by strong acids and bases. Probably for the same reasons it is very diffi-

cult to completely remove remnants of cured and exposed images, see photo
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resist processing in Appendix G. Meticulous inspections and stripping

procedures had to be followed or the remnant componentsinterferred with

obtaining sufficient adherence between film layers in the memory; even

then, considerable difficulty was experienced in this respect. In com-

parison, the AZ-111 resist was easy to remove after etching. From this

standpoint, it is more satisfactory for application where successively

deposited film layers are photoengraved between deposition cycles. How-

ever, efforts to etch chromium-gold films in the 2 to 3 _ thickness range

with AZ-lll masking were unsuccessful because the resist would not with-

stand the etching solution for a sufficient length of time. Thus, to

evaluate the memoryprocesses, KMERwas selected for image masking to
etch aluminum and chromium-gold films and the AZ-lll resist was selected

for image masking to etch the permalloy films.
There are several basic and acidic formulations that will etch

aluminum. However, with manyof these, a stunt is left on the aluminum

surface. Also, basic solutions such as dilute sodium hydroxide and acidic

solutions containing hydrofluoric acid that were first tried attacked

glass and quartz substrates and SiO insulation layers. An improved etch-

ing solution for aluminum films was developed that did not etch the sub-

strates or SiO. The formulation was by volume 2 parts HN03, 1 part "Hi-
SpeedCircuit Etch", and ½ to 3/4 parts HCf. The "Hi-Speed Circuit Etch"

is sold by the Philip A. Hunt Chemical Corp. for etching copper circuit

boards. The primary ingredient is FeCL. Addition of the HNO3 in the
formulation eliminated smut formation. Etching speed is adjusted by vary-

ing the amount of HCf. With ½ to 3/4 parts HCf, aluminum films with a

thickness of about 2.5 _ were etched in 1 to 2 minutes at roomtemperature.

This etching time is sufficiently long to makea visual observation of the

engraving process and is short enoughthat the KMERwill not break down

before the completion of the engraving. With shorter times, it was easy

to over-etch and,hence, difficult to maintain dimensional tolerances.
The "Hi-Speed Circuit Etch" solution was used satisfactorily for

etching permalloy films at roomtemperature. A permalloy thickness of
abcnt 750 angstroms was etched within one second.

The solution used for etching gold was 2 parts by volume of concen-

trated HNO3 to 1 part "Hi-Speed Circuit Etch". This solution etched gold
films in the thickness range of 2 _ in two minutes at room temperature.
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A solution of i part by volume of concentrated HOt to i part water

was used to etch chromiumfilms. The substrate was Dlaced in a beaker of

this solution and zinc powder was addedto catalyze the reaction.

The bilayer films of chromium-gold were etched selectively since

neither of the respective etching solutions for chromiumand gold etched the

other. Whenetching gold over chromiumfilms, the gold was etched first,
leaving the underlying chromiumintact. The substrate was then rinsed with

water to removethe gold etching solution before etching the chromium. Quite

frequently a clean etch could not be obtained on the bottom layer of chrom-

ium with the HCf solution. The very thin layer of material that remained

appeared to be chromium oxide. A dip in fresh chromic acid heated to 125 to

150°C was effective in removing the chromium oxide. When required, this was

done during cleaning of the substrate after stripping of the photo resist

(KMER). This trouble was not encountered with the top layer of chromium in

trilayer films of Cr-Au-Cr.

2.5 Artwork_ Transmission Metal Masks and Glass Photomasks. Master

artwork for the production of the various masks was prepared in the labora-

tory at 20 times actual mask size on Ulano Rubylith (a product of Graphic

Arts Supplies, Inco). Precision photoreduction of the master copies and mask

fabrication services were obtained from Electromask Inc., Van Nuys, Califor-

nia. Both metal transmission masks and high resolution glass photomasks

were purchased for memory fabrication° A few replacement metal transmission

masks were fabricated in the laboratory from original glass photomasks.

There were three sets of masks - one set each for the model memory, the sim-

ple test memory_ and metal mask resolution studies.

The initial metal masks were fabricated of 0.003 inch thick type 304

stainless steel. Because of magnetic effects the stainless steel was un-

satisfactory for masking during deposition of the permalloy film and copper

masks were fabricated for this deposition. The initial glass photomasks for

the memory fabrication were prepared on Kodak High Resolution Plates for

negative working photo resist (KMER). A negative of the original glass mask

for the permalloy was fabricated in the laboratory for the positive working

photo resist (AZ-III).

The two masks used for fabricating the bit lines of the model memory

are shown in Figure 5.13. The transmission metal mask shown in Figure 5.13a

for the bit sense film is typical of the type of metal masks designed for
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all of the films to restrict deposition to the general area desired. The

one exception is the metal mask for the buss lines which defines the line

pattern during film deposition. Figure 5.13b showsthe glass photomask for

photoengraving the precision sense line pattern. The masks for the perm-

alloy film were similar to those for the bit sense film. The major differ-

ences were that the aperture of the metal mask for the permalloy was slightly

smaller and the glass maskhad only one line per pair of sense lines. Photo-

graphs of the bottom and top sides of a model memorystructure is shownin

Figures 5.13c and 5.13d. Note the holes etched in the ground plane in Fig-

ure 5.13c. These are located directly below the position for the selection

diodes. The holes are to prevent the possibility of short circuiting the

buss and word lines to the ground plane during bonding of diode leads. The

sequential use and numberof masks for memoryfabrication is given in Table

5A.

Patterns of the simple test memory were designed to determine oper-

ational characteristics of a variety of film and strip line configurations

in an actual multilayer memory structure. The masks were fabricated for

the deposition of films in an identical sequence to the model memory. The

patterns consisted of a series of 3 sizes of word lines and bit lines as

illustrated in the photographs of a completed specimen in Figure 5.14.

Mutual registration of the substrate and contact metal masks was

accomplished with three precision pins in the substrate holder, see Figure

5.3. Registration marks (4 crosses) were provided on the high resolution

glass photomasks to facilitate pattern registration during photoengraving

of the films.

2.6 Resolution Study of Transmission Metal Masks. Two contact

transmission metal masks were fabricated for resolution studies. The pri-

mary objective in this study was to determine the feasibility of defining

all of the line patterns in the model memory with transmission metal masks.

This would eliminate the required photoengraving steps_ and permit an all-

insitu process. Photographs of these masks are shown in Figure 5.15. One

of the masks, Figure 5.15a, was designed for constant line lengths of one

inch. Line widths of 5, i0, and 15 mil and spacings of 5, i0, 15, and 20

rail were grouped for constant width and constant spacing with the various

width and spacing combinations indicated in the figure. The second mask

shown in Figure 5.15b was designed to determine the effect of length on
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a. Transmiss ion Me ta l  Mask f o r  
D e p o s i t i o n  o f  B i t  Sense F i l m  

b. H igh  R e s o l u t i o n  Glass Photo- 
mask f o r  B i t  Sense L ines  

WORD LINE 
(8  groups 
o f  8 l i n e s )  

HOLE I N  GROUND PLANE 
AT POSITION OF SELECTION 
DIODE (64 t imes )  7 I B I T  DRIVING,-i 

TERMINALS 
(8  t imes) 

PEELING DUE TO 
ADHERENCE FAILURE 
AT NiFe - S i 0  
INTERFACE WITH 
Cr-Au-Cr SENSE 
LINES 

I I II 

BALANCED SENSE BUSS 

(8  p a i r s )  (8  t i m e s )  

U 

LINES LINE TERMINALS 

c. Bottom View o f  Memory d .  Top View o f  Memory S t r u c t u r e  
S t r u c t u r e  Through S u b s t r a t e  

Figure 5.13 Model Memory Specimen and Typical Masks 
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resolution. For this mask, the line length was varied from approximately

2 squares for the line widths and spacings indicated to a maximum length of

one inch.

To determine the resolution of the masks for relatively thick and

thin fib, s, two depositions of gold over chromium films were made for each

mask. In each case_ the substrates were heated to about 350 °C and the

first bilayer film was deposited to a thickness in the range of i000 to 2000

angstroms and the second bilayer film was approximately one micron thick.

The film patterns were examined visually with a stereomicroscope, and d.c.

resistance measurements between adjacent lines were made with an ohmmeter.

From the resistance measurements, it was determined that the line

widths had little effect on the occurrence of shorts between adjacent lines.

It was found that for lines of appreciable length the borderline between

shorted and open conditions occurred at a line-to-line separation of about

i0 rail; this was essentially true for both film thicknesses, although the

occurrence of shorts between adjacent lines was slightly less for the thin-

ner fi/i_s. For lengths of 3/8 of an inch or shorter there was a slight

improvement in line separation, but no significant dependence of separation

on length was observed for longer lengths. However, no shorts were obtained

between any of the lines with spacings equal to or greater than 15 rail.

The microscopic examination revealed considerable shadowing at the

film edges as a result of paralax between the evaporation source and masks.

The sets of longer lines with 5 mil spacing were completely run together

for the one micron thick films. For the 5 and i0 rail wide lines, the width

at the center of the one inch long lines was about double the width at the

ends. Some of the narrower spatial members became warped. Obviously,

warped members did not lay flatly against the substrates so that this con-

tributed to the paralax. Undoubtedly, the broad evaporation source arrange-

ment, see Cr-Au source of Section V-B-2.2, contributed to the paralax. To

eliminate sufficiently the paralax due to the broad source condition, how-

ever, a point source would have to be located at such a great distance from

the 1.5 inches x 1.5 inches substrates that the deposition rate would be

impractical for evaporating the 2 _ thick gold films required for the

memory. Also the advantages previously discussed for the broad source de-

sign would be lost with a point source.

These observations demonstrated rather convincingly that to obtain

the desired line density and resolution of the word and bit lines of the
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512 bit model memory with transmission metal mask would be highly improb-

able. The desire and need to fabricate memories of even greater densities

has been expressed; hence, there appeared to be little to gain by pursuing

the improvement of metal masking techniques.

2.7 Initial Multiple Layer Film Studies. During the period of

preparing artwork and masks for the memories, some elementary masks were

fabricated for fabricating multilayer structures simulating that of the

memories. A structure was fabricated that consisted of a glass substrate

and the following films in sequence of deposition: i_ SiO smoothing layer,

2.5_ AI ground plane, 2_ SiO insulation_ 2_ AI bit sense lines, 2_ SiO

insulation, and 1.5b AI word lines. No permalloy film was included because

the main purpose of the experiment was to evaluate ability to satisfactorily

evaporate the thick insulating and conducting layers. The line patterns

were photoengraved and consisted of one each of 40 nil, 20 nil, and i0 nil

wide bit lines and 3 each of 20 nil, i0 nil, and 5 nil wide word lines.

Low dissipation factors of about 0.02 were obtained for measurements

of capacitance between the metal films. This indicated satisfactory insu-

lation. The stability of the films was very good. There were no peeling

tendencies, even during ultrasonic cleaning. To achieve satisfactory film

adherence_ a minimum substrate temperature of 250 ° C was required for each

of the films.

The excellent stability of the films indicated low intrinsic stress

in the SiO films and low stress between the substrate and various films.

This experiment was very significant in interpreting the film instability

experienced subsequently with fused silica substrates during memory fabri-

cation efforts.

2.8 Detemination of Bondin_ Methods. Both ultrasonic and thermal

compression bonding of the gold foil leads of the selection diodes to gold

over chromium films were tried. Reliable bonding was obtained much more

readily for these gold to gold bonds by thermal compression techniques.

Figure 5.6 shows one of the diodes bonded in a typical word line pattern

at one of the 64 locations for the diodes. (Note the staggered positions

for the diodes on adjacent lines. This was done to make room for the fall

width of the diodes)o

The fabrication did not progress to the point of connecting the

memory to the circuits board; however, it was planned that flying gold
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leads would be used for this purpose. All of the ground plane, drive, and

sense terminals of process B were gold or chromium over gold, and solder-

ing of the flying gold leads to the film terminals and circuits board was

planned. On the other hand, the bit line and ground plane terminals for

specimens of process A were aluminum. Ultrasonic bonding of the gold leads

to the aluminum films was considered the most likely of methods that would

be used.

3. Adaptation of. the Proposed Processes

The two processes designed for memory fabrication were discussed in

Section V-B-I. The studies discussed in Section V-B-2 led to several spe-

cific conclusions implemental to the general plan of attack. Efforts were

then devoted directly to fabricating memory specimens to effect or adapt

these initially proposed processes. By concentrating the fabrication ef-

forts mostly on a complete process, attention was directed to vital prob-

lems as they occurred in the sequential build-up of the multiple film struc-

tures. These efforts were conducted primarily on the simple test memory

structure. Fabrication details_ difficulties encountered_ and progress made

toward effecting the processes are discussed in this section.

3.1 Reticulation of SiO Films on Fused Silica Substrates and the

Selection of Glass Substrates to Eliminate the Problem. Memory fabrication

was begun on fused silica substrates. Several simple test memory specimens

were fabricated by process A to the point of photoengraving the permalloy

storage film. At this point, examination with a stereomicroscope revealed

that the second SiO film was reticulating_ see Table 5A. Initially, the

crazing of the SiO layer occurred only in areas where it was over the first

SiO smoothing layer on the substrate. Figure 5.16 is a photograph showing

an advanced stage of reticulation in areas of SiO over SiO. The gross

reticulation shown in Figure 5.16 occurred with time. At first, only a

few cracks were in the SiO; however, the crazing increased with time, and

it could be promoted by probing along the edge of the ground plane with a

steel scribe or by ultrasonic vibrations. During the probing_ cracks would

originate in the second SiO layer at the edge of the aluminum ground plane

and progress outward from the ground plane to the edge of the second SiO

film. This indicated that the points of highest stress were along the edge

of the ground plane. It was difficult to cause the SiO over the aluminum

to craze by probing; however, ultrasonic cleaning in water produced crazing
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throughout the second layer of SiO. For these specimens, the SiO was

deposited at a rate of about 4000 angstroms per minute, and the tempera-

ture of the copper plate substrate holder (hereafter referred to as the

substrate temperature) was 350°C and 400°C, respectively, for the aluminum

and SiO depositions. The films were then annealed to 450 ° C during subse-

quent substrate heating for the permalloy deposition.

Experiments were conducted by process A to determine if a slower

SiO deposition rate and higher substrate temperatures for the aluminum and

SiO would eliminate the reticulation. No improvements were obtained for

variations in the substrate temperatures or for the slower SiO deposition

rate.

Next, specimens were fabricated by process B with deposition para-

meters similar to those for process A, and the reticulation problem re-

mained. Thus, substitution of Cr-Au-Cr for the aluminum did not eliminate

the problem.

The occurrence of reticulation was unexpected since it did not occur

in the earlier preliminary studies. In those studies, glass substrates were

employed. Specimens were fabricated similar to the previous specimens by

both of the hypothetical processes substituting Corning type 7059 glass sub-

strates for the fused silica. No reticulation occurred in any of the SiO

films even after subjection to ultrasonic cleaning for periods of 15 min-

utes.

It was concluded that fused silica substrates were not compatible

with the memory structure of either process and that glass substrates were

satisfactory. In addition, it appeared that ultrasonic vibration was a

method that can be possibly developed for testing the adherence qualities

of films. Corning 7059 glass substrates were used for all of the subse-

quent memory fabrication.

3.2 The Elimination of Three Sources of High Skew and Dispersion

in Permalloy Films. During memory fabrication, the permalloy films were

examined with the Kerr Effect apparatus before and after photoengraving.

This was done to determine if the magnetic properties were satisfactory be-

fore continuing with the photoengraving and also to detect any changes in

the magnetic properties as a result of engraving. These measurements aided

in detecting three sources of excessive skew and dispersion in the permalloy

films.

The first transmission metal masks used during the evaporation of
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the permalloy films for fabricating the simple test memory were fabricated

of type 302 stainless steel. This type of stainless steel is supposedly

nonmagnetic when fully annealed; however, films fabricated during the use

of these masks were highly skewed. The skew appeared to increase with re-

peated use of the masks. Measurement of the residual magnetic field on

one of the masks indicated a field strength of 50ersted. The effects were

eliminated by using copper masks in subsequent permalloy film depositions.

The thickness of the insulating SiO film over the ground plane also

influenced dispersion and H values obtained for permalloy films. Usually
C

excessive dispersion (_90 > l° ) was obtained where the thickness of the SiO

film over the ground plane was estimated to be substantially less than 2 _.

On the other hand, minimum H and dispersion values were obtained for SiO
C

films exceeding 3 _ in thickness. For the thicker SiO films, H and dis-
c

persion values of 1 oe to 1.5 oe and 0._ to 1° were typically obtained be-

fore photoengraving.

During initial fabrication efforts the AZ-lll resist used for mask-

ing permalloy films during etching was applied in two successive spin coats

at 2500 r.p.m. Occasionally, the permalloy films were highly dispersive

after the films were etched and the photo resist was removed. Further exam-

ination revealed large holes in the films that were not present before

etching. This condition was corrected by applying dip coats of the resist

to obtain better masking of the permalloy film.

3.3 Shortin 6 Between Metal Films and Methods Used to Eliminate

Shorts. To determine insulation quality of SiO films in the memory struc-

tures, measurements of capacitance, dissipation factor, and d.c. resistance

were made between the various metal films after each film was etched.

These measurements were made with an impedance bridge, General Radio Type

1650-A. From the capacitance values, the average SiO thickness was calcu-

lated by assuming a relative dielectric constant of 6 and using the known

film area. For an SiO thickness in the range of 1 to 4.4 _, only an

occasional short occurred between the permalloy lines and the ground plane

for either of the initially proposed processes. On the other hand, pro-

nounced shorting occurred between the bit sense line and the ground plane.

The shorting of the sense lines to ground occurred for both of the proces-

ses; however, the shorts were more numerous for metal films of Cr-Au-Cr

than for aluminum. A similar situation existed between the bit sense and

word lines for the SiO thickness range of 1 to 4.4 _.
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To locate position of shorts, test specimenswere placed in a petri

dish of methanol and observed with a stereomicroscope while a d.c. poten-

tial was applied across affected lines. As the voltage was increased, the

shorted points becamehot and caused local boiling of the methanol. It

was surprising that the hot spots did not appear first at suspected points

such as crossovers_ surface defects, and film edges. At applied voltages

above 20 volts, the shorting began to occur more regularly at film edges
and points that might be suspected.

Shorting between aluminumfilms could be readily eliminated by dis-

charging a one microfa_ad capacitor, charged to 5 to i0 volts, between
affected films. It was more difficult to eliminate shorting between Cr-Au-Cr

films. For the latter films, the capacitor had to be charged to about 40
volt s.

Several specimenswere fabricated by depositing the SiO at 500 A/min

instead of the 4000 _/min used for the previous films. In addition, the

deposition cycle was interrupted to complete the depositions in two succes-

sive evaporations. During the interruption, air was admitted to the vacuum

chamber and the specimenswere rotated 90 degrees in the plane of the evap-

oration source before depositing the second half of the film. No signifi-

cant improvement in the occurrence of shorts was noted in these experiments;

however_ numerousauthors have reported improvementsby using extremely low
deposition rates or by interrupting the deposition cycle and exposing the
film to air.

Increasing the thickness of the SiO appeared to be most significant

in reducing shorts and dissipation factors. The model memoryspecimenof
Figure 5.13d was fabricated by process B. The insulating SiO films be-

tween the buss lines and word lines were evaporated at a rate of about 6000

A/rain. to a thickness of about 8 _ in an uninterrupted deposition. The buss

lines overlap the word lines a total of 274 times where insulation is re-

quired. Noneof these crossovers were shorted. Also, there were no shorts

between the buss lines and ground plane; however, in the latter case, the
thickness of the SiO was from 16 to 24 _ as a result of the multiple SiO

layers in the memorystructure. The capacitance and d.f. values of each

pair of sense lines to the ground plane was 210 _ I0 pf and O.01, respec-

tively. The total absenceof shorts in these cases indicated that 8 _ thick
SiO films would essentially eliminate shorting problems. No SiO insulating

films were deposited in the thickness range from 4.4 to 8 _; therefore, the
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minimum thickness required to eliminate excessive shorting was not estab-

lished. Frc_l the few shorts obtained for thicknesses of 3 to 4 _ however_

it is expected that satisfactory SiO insulation can be obtained at film

thicknesses of 5 to 6 _ for either of the processes or either memory struc-

ture.

Possibly improved SiO insulation can be obtained by operating the

broad SiO source at a reduced source to substrate distance. This will in-

crease the average angle of incidence of the SiO atoms arriving at the sub-

strate, and the source temperature could be lowered to reduce any dis-

association of the SiO at the source while maintaining a high rate of dep-

osition. Both effects should be beneficial and examined in the future.

3.4 Diffusion of Permalloy and Aluminum Bit Sense Lines$ A Method

of Eliminatin_ the Aluminum - Permalloy Diffusion_ and a Short Study of

Diffusion of Permalloy with SiO_ Cr-Au_ and Cu. When the first simple test

memory was processed to the point of completing the bit sense lines by pro-

cess A, it was noticed that in every case the resistance of the aluminum

line over the permalloy was higher by about i0 percent than their respective

mating balance lines which did not have permalloy beneath them. This dif-

ference in resistance was an indication that the aluminum and permalloy had

alloyed; nevertheless_ the specimen was completed with aluminum word lines

to see if the memory would function. No semblance of a switching signal

could be detected during a performance test.

No previous tests were made to determine the diffusion properties

of aluminum and permalloy films; however, a diffusion possibility had been

anticipated. A permalloy film previously prepared on glass during the pre-

liminary studies was selected to determine the effects of deposition alum-

inum films on permalloy films at the 350°C substrate temperature. The mag-

netic properties of the permalloy were measured with the Kerr Effect

apparatus at the substrate-permalloy interface from the substrate side be-

fore and after depositing an aluminum film over the permalloy. These meas-

urements indicated that the magnetic properties of the permalloy were

completely destroyed. This experiment demonstrated the incompatibility of

aluminum films in direct contact with the permalloy.

It was decided then to determine if a thin SiO film over the perm-

alloy would prevent the occurrence of diffusion between the permalloy and

a subsequently deposited aluminum film. In the same manner of testing used

before_ it was first determined that a 2000angstrom thick SiO film did not
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adversely affect the permalloy and secondly that a subsequently deposited

aluminum film over the SiO did not adversely affect the permalloy.

A simple test memorywas fabricated by process A modified to in-

clude an additional thin layer of SiO (500 to i000 _) between the permalloy

and storage film. It was operationally tested; however, the switching sig-

nal levels were below the noise level of the test fixture. Signals _ i my

are observable in this apparatus. It is believed that the low signal level

was a result of overetching of the permalloy film. Large and numerousholes

were observed in the permalloy after etching (see the discussion on over-

etching with spin coats of resist AZ-III in Section V-B-3.2). Another pos-
sible reason for the poor performance is local diffusion of the aluminum bit

lines with the permalloy through pinholes in the thin SiO film between them.

It can be safely assumedthat SiO films can be deposited sufficiently

free of pinholes to prevent any adverse diffusion effects between the perm-

alloy and aluminum films of process A. However, from a standpoint of system
performance the extra separation between bit line and ground is not desir-

able. For this reason, work on process A was terminated and attention was
directed fully to effecting process B.

Before going directly to memoryfabrication with process B, it was

determined that the Cr-Au sense lines of process B would not adversely

affect the magnetic properties of permalloy; this was done in the sameman-

ner previously used to detect the effects of aluminumon permalloy. In

additional tests, copper in the thickness range of one micron was observed
to destroy the magnetic properties of permalloy films (700 _ thick) at

35o°c.

3.5 Adhesion Failure at the Permalloy-SiO Interface with Cr-Au-Cr

Bit Sense Lines. Several simple test memory structures were satisfactorily

processed by process B until the Cr-Au-Cr bit sense lines were photoengraved

and cleaned. At this point, it was observed that the sense lines were peel-

ing. It was discovered that the peeling occurred only for that portion of

the Cr-Au-Cr lines over the permalloy and that the adherence failure was at

the permalloy-SiO interface. An example is shown in Figure 5.17.

A sample of peeled film was taped to a glass slide with the permalloy

side up for examination with the Kerr apparatus. These measurements indi-

cated that the magnetic properties of the permalloy film were still satis-

factory. This bit of information was encouraging since it proved that the

Cr-Au film deposition did not adversely affect the magnetic properties of

the permalloy.
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Figure 5.17 Photograph Showing Peeling of B i t  Sense Line Resulting from 
Adhesion Failure a t  Permalloy- S i 0  Interface 
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Before depositing these Cr-Au-Cr sense films, the substrate was
outgassed by baking at 350° C for about 15 minutes. To deposit the Cr-Au-Cr

the substrate was cooled to 200° C. The evaporated sense line film was then

post-annealed in the vacuumchamberat 350° C for about 15 minutes. It is

possible that annealing of the Cr-Au at temperatures in the range of 400 to

450°Cwill eliminate stresses that caused the peeling, but there is a pos-

sible danger that the chromiumwill alloy or diffuse with the permalioy at

the higher temperature, so another method to eliminate the peeling was
tried.

It was decided first to deposit a thin film of SiO over the perm-
alloy before depositing the Cr-Au-Cr sense lines. Two simple test struc-

tures were fabricated by process B with this modification. On one of these

the SiO was deposited to a thickness of about 1500 _ and on the other speci-

men the thickness was 3000 to 4000 A. The bit sense lines did not peel on

either specimen. Both of these specimenswere completed for an operational
test_ and during the subsequent fabrication no peeling occurred. In the

operational tests_ peak switching signals of about ± 2 my were obtained.

The film dispersion was so large however that a stored bit was not stable

under any disturb pulses. The pulse program was modified to directly meas-

ure the write modeswitching astroid and the single pulse disturb astroid.
From this data it was observed that no combination of word and bit write

currents existed such that the bit current alone would not disturb the film.

Measurementswith and without the keeper present indicated a keeper effi-

ciency of only 40%. The keeper used in this fixture was not fabricated by

the finalized process developed and had a high percentage of bubbles and

voids. This low keeper efficiency would increase the bit current required
to write by at least a factor of two and probably accounts for a signifi-

cant part of the poor observed test characteristics. Howeverwe also ob-

served that the amount of flux linking the sense line was a factor of 2.5
smaller than predicted. With a film 800 A thick and keeper efficiency of

40%the flux linkage should be approximately i0 x 10-12 weber. By integra-
ting the observed switching signal wemeasured4 x 10-12 weber. There is

the possibility that the Ni-Fe film was adversely affected during photoen-

graving. Time did not permit detailed investigation of this anomoly.
Since there was only enoughtime left on the contract to fabricate

one or two more memorystructures, it was decided to use this time to fab-

ricate a 512 bit model memoryby process B, modified to include an SiO
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layer between the Cr-Au-Cr bit sense film and the permalloy. This film

was deposited to about 3000 angstroms in thickness for the memoryfabri-

cated. The SiO film did not prevent the peeling in the more complex line

structure, but a significant reduction in peeling tendencies was obtained

comparedto the earlier films where the extra Si0 layer was not used. The

peeling was sufficiently restricted that the remaining films of the memory

structure could be fabricated. This specimen is shownin Figures 5.13c

and 5.13d where the peeling is noted. The reduced peeling comparedto the

specimen in Figure 5.17 is apparent. The latter case was typical of the

extent of peeling that occurred immediately after etching the sense lines

when SiO was not used between the permalloy and Cr-Au sense film.
It appears from these studies that an SiO film in the thickness

range of 0.5 to i _ will eliminate the permalloy adherence failure at the

SiO interface. However, for the samereasons expressed previously for
process A, this is not the most desirable approach; it is recommendedthat

other methods of eliminating the problem be investigated. The first meas-

ure recommendedis to deposit the initial chromiumlayer at the highest

possible temperature that can be used without adversely affecting the mag-

netic properties of the permalloy. For the previous specimens, this temper-
ature was 200°C_but it was determined in the diffusion experiments that

this can be increased to 350°C. Themaximumtemperature that can be used

can be just as simply determined. The gold deposition temperature can be

increased in like manner. Annealing effects at higher temperatures would
result in minimumintrinsic stress for the Cr-Au film. This in turn will

possibly result in less strain on the permalloy film.

A second measurethat would shorten the process and possibly elimi-

nate peeling is to deposit the permalloy through a transmission metal mask

that roughly defines the permalloy lines. Following the permalloy deposi-

tion, the sense line film layer is then deposited and the precision line

pattern of the permalloy and sense lines is etched in a commonengraving

step.

In the event that these measuresdo not eliminate the problem,
another metal such as molybdenum,tantalum, or platinum might be substi-
tuted for the chromium.

3.6 Minor Difficulties Common to Processes A and B. The diffi-

culties discussed in this section were of a minor nature, in that, solutions

were not required to realize the primary objective of fabricating a working
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memory by either of the processes. Solutions to the problems would, how-

ever, result in overall improvements in the fabrication processes. There

were three difficulties or problem areas of this nature. These were: skew

and variation in H values over the permalloy film area, the method of
C

measuring substrate temperature during film deposition_ and stripping of

KMER. To some extent, the latter two problems have been discussed.

In general, H values and dispersion varied over the permalloy film
c

area. This variation was within the specified limits; however, the varia-

tions did follow a characteristic pattern. While the shape of the permalloy

possibly contributed to the observations, it appeared that the film deposi-

tion apparatus was a significant influence on the pattern shape in this

work. As discussed in Section V-B-3.2, stainless steel transmission masks

had to be eliminated for masking during the deposition of the permalloy be-

cause of its contribution to high H and dispersion. In the latter instance,
C

the variations in H c and dispersion were greater but followed the same gen-

eral pattern. Inspection of the deposition apparatus revealed that all of

the type 303 and 304 stainless steel parts such as the screws, mask support,

and spacer ring of Figure 5.3 and the tripod and top support plate of Fig-

ure 5.2 possessed a small amount of residual magnetism. The square holes

in the top support plate of the tripod_ where the substrate was located

during film deposition_ and the stainless steel frame section of the sub-

strate support fixture are of the same general shape (rectangular) as the

stainless steel mask, but further removed from the film. Hence, due to

the similarity in pattern shapes observed with and without the metal mask

it is believed that when the Helmholtz field was applied during film dep-

osition the field induced in the stainless steel parts contributed to the

pattern of variation in H and dispersion. It is suggested that in the
c

future nonmagnetic and nonferrous materials such as aluminum-titanium

alloys, aluminum, copper_ tantalum, and ceramics be used for constructing

vacuum tooling to eliminate any possibility of adverse tooling influence

on the magnetic properties of the films.

The difficulty of removing KMER remnants after engraving is dis-

cussed in the photo resist processes, Appendix G. Poor removal, in a fe_z

cases, caused peeling of subsequently deposited films. It is suggested

that another type of resist be tried that is easier to remove. The AZ-III

resist is easy to remove, but for the process developed, it would not with-

stand the etching solution for Cr-Au films. To etch the thick Cr-Au films
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used in the memory with the AZ-III resist a different etching solution

or improved application and curing procedures will be required.

The method of heating and measuring the temperature of substrates

was discussed. The method permitted consistent reproduction for a given

set of conditions but was not an accurate indication of the actual tem-

perature of the substrate, in particular for the Cr-Au and SiO evapora-

tions. In these evaporations, the high intensity of heat radiation from

the sources caused the substrate temperature to rise above that of the

copper heater, and the temperature of the latter was measured. The dis-

advantage was the extra time required to emperically establish a set of

conditions for depositing films that otherwise could have been established

more readily with an accurate measurement of substrate temperature.

3.7 Typical Magnetic and Electrical Parameters of Films in the

Memory Structures. The magnetic properties of the permalloy films in

Figures 5.11 and 5.12 were for large area continuous films on glass sub-

strates o For memory fabrication, the permalloy (81-19) was evaporated at

a source to substrate distance of 6 inches from a tungsten basket on sub-

strates at 450°C to a thickness of about 750 angstroms with a constant

applied field of 40 Oersted. They were annealed at this temperature for

15 minutes and subsequently cooled to room temperature in i0 to 15 minutes

with no applied field. The Hc_ dispersion (_90), and skew (9) values var-

ied some with the thickness of the SiO film over the ground plane, i.e.,

lower values of all three parameters were obtained as SiO thickness was in-

creased.

Hk values of the permalloy films in the memory structures were

typically in the range of 3.5 to 4.5 oe before and after etching. Where

thicker SiO films in the 3 to 8 _ range were used, H c = 1.2 to 2 oe,

_90 = O._ to 2, and B = ± i._. After etching _90 and Hc usually in-

creased showing a dependence on line width with typical average values of

_90 = 4° , 6° _ and 12° and H c = 1.57 1.6, and 2 oe, respectively, for 40,

20 and I0 rail wide lines. Hc showed somewhat less tendency to increase

during etching after introducing the dipping technique of applying the

AZ-l]iresist. For SiO films of about i to 2 _ in thickness over the ground

plane and before etching_ the magnetic parameter of the permalloy were more

scattered ranging from values as low as those for the thicker SiO films to

excessively high values but typically Hc = 1.5 to 2.5 oe, _90 = I° to 20_

and _ = ± 2° .
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Capacitance measurementsbetween the metal films were madeto have

a record for subsequent electronic testing and evaluation. Also, the d.f.

values of the capacitance was an indication of the insulating quality of

the SiO. For the model memoryspecimen of Figure 5.13d, the capacitance

and d.f. values of each pair of sense lines to the ground plane was 210

i0 pf and 0.01, respectively. From the film area and average capacitance
value, the average SiO thickness was calculated to be 8.6 _. After the

deposition of the word lines, the word lines, bit lines, and ground plane
were shorted due to the peeling of the bit lines and further measurements
were not made.

For the simple test memoryshownin Figure 5.14 the capacitance of

the bit sense lines to the ground plane was 455, 233, and 123 pf, respec-

tively, for the 40, 20, and i0 mil lines, and the corresponding d.f. values

were 0.12, 0.01, and 0.012. After depositing the word lines, the respec-

tive bit line to ground plane capacitance and d.f. values were 493, 255,

and 146 pf and 0.015, 0.022, and 0.025. From these capacitance values, the
SiO insulating films were about 4 _ thick. The respective average sheet

resistivity of the bit and word lines were calculated as 0.016 ohmsper

square and 0.02 ohmsper square; however, the actual resistance per square
was somewhatlower than this since the contact resistance between the

metering probes and films was not eliminated from the measured resistance

values in making the calculations. The d.f. values obtained for this spec-

imen were typical of memorystructures fabricated by both processes with

SiO films ranging from 3 to 8 _ in thickness and metal films having sheet

resistivities in the range of 0.01 to 0.02 ohmsper square.

3.8 Comparison of the Processes After Optimization. With substrate

temperatures measured as discussed previously, the permalloy films were

deposited at temperatures of 450°C in both processes. Substrate tempera-

tures of about 450°C, 350°C to 400°C, and 200°C were used, respectively,

for Si0, AI and Cr-Au film evaporations before the permalloy deposition.

For the Cr-Au depositions, 200°C was the initial temperature and this in-

creased to an unknown value in the range of 300 °C to 450 ° C. After the perm-

alloy was evaporated_ substrate temperatures of about 350 ° were used for all

film depositions. Copper transmission masks were used satisfactorily in

both processes for permalloy film depositions, and type 304 or 302 stain-

less steel masks were used for the remaining films of the structures. Ex-

cept for the etching solution, the photoengraving processing was basically
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commonto both processes. Corning type 7059 glass was selected over fused

silica for the substrate in each process. Cleaning processes are given in

Appendix H. In general, hot chromic acid cleaning was used after photo-

engraving the Cr-Au films in process B, but it was not used for direct

cleaning of the permalloy film. Hot chromic acid attacks aluminum films,

and was not used in any of the cleaning steps for process A.

It was determined that a thin film of SiO (2000 to 3000 A) between

the permalloy and aluminumprevented the diffusion. Similarly, it appeared

that an SiO film in the thickness range of 0.5 to i _ can be used between
the permalloy and Cr-Au-Cr to possibly eliminate the adhesion failure in

process B. However, for both processes, it is more desirable, though not

necessary, to have the sense lines in direct contact with the permalloy.

Possibly, this can be achieved for both processes by evaporating a refrac-

tory metal film between the sense lines and permalloy. Also, for process

B, optimum annealing conditions for the Cr-Au films may eliminate the peel-
ing. For both processes, SiO insulation of 8 _ essentially eliminated

shorting between the various metal films of thickness in the range 1.5 to

3 _. It appears that somewhatthinner SiO films in the thickness range of
5 to 6 _ will be satisfactory.

Film structure of the simple test memoryplanes fabricated by process

A exhibited excellent mechanical stability. The mechanical stability of

the structures of process B with Cr-Au-Cr, SiO, and Ni-Fe films was excel-
lent, except for the adhesion failure of the bit sense lines.

As mentioned above, chromic acid cleaning was used after photoen-
graving of the chromium-gold films in process B. The acid will slowly

attack permalloy. It was assumedthat the permalloy was adequately protec-

ted by the thick chromium-gold and SiO overlayers. A thorough proof of

this assumption was not made,but supporting evidence was obtained whenthe

peeled sense lines were examinedwith the Kerr apparatus, in these instan-

ces, the chromic acid cleaning was used on the Cr-Au-Cr sense lines before

peeling and the magnetic properties of the permalloy on the peeled sense
lines were good.

The one model memoryfilm structure completed was knownto be bad

when the sense lines began to peel after they were etched. The subsequent
film processing was completed to determine if all of the various maskswere

correct and in proper registration.
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During the course of working with the two processes, a slight pref-

erence was developed for process B. This was due primarily to the more

rigorous cleaning procedures that could be employed with the Cr-Au films

compared to that for the aluminum films of process A. Also the gold termi-

nations for all of the lines were considered an advantage for subsequent

connections to the circuits board. In this preference, it is assumed that

the peeling of the sense lines can be eliminated by one of the suggested

methods. Process A appears to be a satisfactory approach also and has some

advantages over process B. It is expected that either process can be deve-

loped for memory fabrication. However, considerable additional efforts will

be required to make either process effective for pilot production and to

prove them compatible with silicon substrates.

In view of the considerable progress made during this report per-

iod, it is estimated that the fabrication efforts required to obtain a

satisfactory process will be about equal to that devoted to fabrication

during this program which was the combined efforts of one research physi-

cist and one assistant research engineer to the total of about 1.5 man-

years.

C. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to develop an all-evaporation pro-

cess for fabricating a multilayer film memory plane compatible with inte-

grated circuit technology. It was proposed that fabrication of a 512 bit

hybrid memory circuit on a single substrate to include not only a thin film

memory matrix but also the selection diodes and buss lines be considered

first as an intermediary step to fabricating a memory matrix on a silicon

wafer with diffused electronics. Considerable progress was made toward

effecting two proposed processes A and B. In process A, films of SiO, AI,

Si0, Ni-Fe (81-19), Al, SiO, Cr-Au, Cr, SiO and Cr-Au were successively

evaporated. In process B, successively evaporated films of SiO, Cr-Au-Cr,

SiO, Ni-Fe (81-19), Cr-Au-Cr, SiO, Cr-Au, Cr, SiO, and Cr-Au were used. The

simple test memory consisting of a film memorymatrix of 27 bits with a film

deposition sequence identical to the first seven films of processes A and B

proved to be a useful tool for examining the proposed processes.

Multiple tungsten boats and baskets physically separated to simulate

a broad source condition proved to be satisfactory, respectively, for evap-

orating Cr-Au and AI films of the memory plane. Values of sheet resistivity



of 0o010 to 0.015 ohmper square were obtained.

A broad source _th a graphite cloth element to evaporate SiO proved
capable of deposition rates to about i00 A/sec. An Si0 film thickness of

8 _ essentially eliminated shorting between the various metal films 1.5 to

3 _ thick. It appeared that somewhatthinner Si0 films in the thickness

range of 5 to 6 _ will give satisfactory insulation. Investigations to

determine optimum source temperature for the graphite cloth source and to

adjust the source to substrate geometry for maximumpossible average angle

of incidence for atoms arriving at the substrate will possibly permit the
use of thinner Si0 films.

A single tungsten basket was found satisfactory for evaporating

permalloy films to a target thickness of 750 angstroms, but the numberof

evaporations from a single basket was restricted to two to avoid excessive
skew and dispersion of the easy axis of the films that occurred with more

extensive use of a basket. Of the ranges of substrate temperature (25°C to

500° C) and intensity of an applied magnetic field (zero to 60 oe) examined

for the deposition of permalloy, the most satisfactory compromisebetween

low dispersion and high Hc/Hk was obtained for a constant applied field
strength of 40 oe at a substra%e temperature of 450°C. It was determined

that an applied magnetic field was not necessary during post deposition

annealing at 450°C for 15 minutes and subsequent cooling. The latter in-

ferred that a field need not be applied during subsequent film fabrication

if the substrate temperature was maintained below 450°C. _k values of the
permalloy films in the memorystructures for these conditions ranged from
3.5 oe to 4.5 oe or close to the target value of 4 oe or less before and

after etching the bit lines. Additional variables affecting Hc, _90' and
_, were the thickness of the SiO over the ground plane and line width of

the permalloy. It was found that before etching the permalloy that values

of Hc = 1.2 to 2 oe, _90 = 0.5° to i °, and _ = _ 1.5° were consistently
obtained for an SiO film thickness of 3 to 8 _ over the ground plane.

After etching the permalloy, Hc and _90 usually increased showing a depend-
ence on line width with typical values of Hc = 1.5, 1.6, and 2 oe, and

_90 = 4°, 6° ' and 12° , respectively, for 40, 207 and i0 rail wide lines.
For multilayer film memoryfabrication, experiments indicated that

transmission metal maskswere unsatisfactory for resolving film line pat-

terns with separations of less than 15 to 20 ten thousandths of an inch.
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Except for the permalloy, stainless steel type 304 and 302 transmission

metal maskswere found satisfactory for defining the large area deposits
and buss lines of the 512 bit model memory. It was found that highly dis-

persive permalloy films were obtained with repeated use of stainless steel

masks to define large area permalley deposits; on the other hand, copper

proved to be satisfactory for masking large area permalloy deposits.

Photoengraving techniques using high resolution glass photomasksproved to

be satisfactory for fabricating the precision patterns of the ground plane,
storage film, sense lines, and word lines.

Shipley's resist, type AZ-lll, proved to be satisfactory for masking

permalloy during photoengraving. Kodak-Metal-Etch-Resist (KMER)masking

was found satisfactory for engraving metal films of AI and Au-Cr, but it

is recommendedthat improved methods of removing the KMERor other resist

materials more easily removedafter engraving be investigated. Solution

formulations by volume of 2 parts HNO3,i part "Hi-Speed Circuit Etch"_ and
1/2 to 3/4 parts HCf; 2 parts HNO3 to i part "Hi-Speed Circuit Etch"; i part
HC_to i part water with a zinc catalyst; and "Hi-Speed Circuit Etch" were

found satisfactory for etching, respectively, films of AI, Au, Cr, and perm-
alloy.

Of the two substrate materials examined (fused silica and Corning
type 7059 glass), the glass substrates gave the most consistent mechanical

stability of the multilayer film memorystructures.

It was determined that the method of heating the substrate with a

contact copper plate and measuring the temperature of the plate as an indi-

cation of substrate temperature was sufficiently reproducible but that this

method of specifying the substrate temperature was not necessarily an accur-

ate measurementof temperature of the substrate perse.
As specified, substrate temperatures during film deposition of 400° C

to 500°C, 450°C, and 350°C, respectively, for films preceding the permalloy,
the permalloy, and films succeeding the permalloy gave consistently excel-

lent adherence of films in the multilayer structures fabricated by process

A. For similar substrate temperatures in process B, there was an adherence
failure at the permalloy-SiO interface with adhesion of the remaining films

being excellent. In process A, alloying of the aluminum sense lines with
the permalloy at 350°C destroyed its magnetic properties. It was determined
that a thin film of SiO (20OOto3000 A) deposited between the permalloy and

aluminumprevented the diffusion and concurrent adverse effects on the
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permalloy. Similarly, it appeared that an SiO film in the thickness

range of 0.5 to i _ can be used between the permalloy and Cr-Au-Cr to

eliminate the adhesion failure in process B. However, for both processes

it was concluded that direct contact between the sense lines and permalloy

is more desirable though probably not necessary. To achieve direct con-

tact, an examination to use evaporated films of metals such as molybdenum,
tantalum, platinum, or palladium between the permalloy and sense lines of

both processes is recommendedas a profitable future course. Also, for
process B, a study of optimum annealing conditions for the Cr-Au sense

lines to eliminate the Ni-Fe adherence failure is suggested. A third meth-

od recommendedis that the precision etching of the permalloy lines can be

delayed for a commonphotoengraving step with the sense lines by using a

trasmission mask to roughly define the permalloy line pattern.

Simple test memoryspecimens fabricated by processes A and B modi-

fied to include a thin SiO film between the permalloy and sense lines did
not meet the expected functional characteristics. It was concluded that

damageto the permalloy film occurred during fabrication subsequent to that

of the permalloy film. Time did not permit a detailed investigation of the

anomolousbehavior. It is expected that either process can be developed

for memoryfabrication; however, the answers obtained pointed to a consid-

erable amountof further engineering development to fabricate reliably

multilayer film memories by either process or to prove either process com-

patible with silicon substrates.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The work carried out under this contract indicates that the proposed

integrated thin film memory system is indeed feasible. A detailed system

analysis has shown that word drive current requirements will be approxi-

mately 150 ma and sense signals at the array terminals of 3 mv to 4 mv can

be expected. Integrated circuit drivers and sense amplifiers capable of

operating to these specifications have been designed, fabricated, and eval-

uated. To eliminate demagnetizing effects and increase drive line effi-

ciency, a ferrite keeper material has been developed which provides a rela-

tive permeability of nearly lO over a wide frequency range. This material

also possesses the mechanical compliance necessary to permit it to conform

to all surface variations thus providing high efficiency flux closure. The

keeper is instrumental in achieving the low drive currents and high signal

levels of this design.

Because of an adherence problem at one interface in the lO layer film

array structure, an operable memory system was not achieved during this con-

tract period. It has been possible, however, to identify and solve the vast

majority of fabrication problems, and there is little doubt that this one

remaining can be solved with additional time. The significance of the fab-

rication problem can be appreciated when considering the fact that the array

consists of ten individual film layers each having a thickness of 20,000

to 60,000 A. As a result of the work done under the fabrication effort, a

compatible material system has evolved and detailed process techniques have

been developed. Significant among these was the development of a new evap-

oration source to deposit thick SiO insulating layers at high rates and free

of high stress regions near conductor edges. A patent application has been

filed on the development of this source because of the importance of sound

insulating layers in thin film circuitry of all types.

It is recommended that additional fabrication effort be extended to

complete the Processing of the complete memory system. Following evaluation

of this completed system, a development effort directed toward increased

density would be a logical successive program. From the system analysis

performed, it is predicted that a scaling of one-half is easily attainable.

Using the photo-lithographic processes herein developed, high tolerance

line dimensions of a half scale system can be produced in a straightforward
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manner. The work performed under this contract, therefore, provides the

basic foundation upon which a highly sophisticated space oriented memory

system can be developed.
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APPENDIX A

DEMAGNETIZING FACTORS OF THIN FILM ELLIPSOID
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__B

DERIVATION OF KEEPER EFFECTS

Magnetostatic Fields From Film Edges

Whenever a discontinuity of magnetization occurs due to either a

film edge or a domain wall, a magnetic surface charge distribution is

established such that

where

• M =

2
surface charge density in poles per m

discontinuity in magnetization

outward normal unit vector at the surface.

(B.1)

If these charges act entirely in an isotropic uniform median, the resulting

field due to them can be calculated easily from a magnetic scaler potential

in an identical manner as electric charge. Hence,

i 5U = r
surface

and from this the magnetic field is calculated as the negative gradient

of the potential, i.e.,

- _o vU • (B.3)

If the charge distribution is in the vicinity of a material boundary of

different permeabilities there exists a second surface charge distribution

at this boundary surface which alters the potential distribution and in

general, requires a solution of Poisson's equation. However, if the bound-

ary is simple_ an image solution can often be obtained and such is the case

with a magnetic film edge below a permeable keeper.

To demonstrate the effect of the keeper, consider a single point

charge located below an infinite slab of material of permeability _2 as

shown in Figure B.1.
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z

/

Y

w X

P2 qil

REGION 1

qi2' ql

Figure B. i

Establish an image charge qi at distance d within region 2. In order to

determine the potential in region 2, it is necessary to establish an image

in region i. We let it be at the same location as q, but with magnitude

qi2" Thus in region i, the potential at any point _is given as:

UI = _ + r2

and in region 2 as:
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In rectangular coordinates:

2rI = (y- d) 2 + x 2 + z

2r2 = (y+d)2+x 2 +z (B.6)

2r3 = (y - d)2 + x 2 + z

Now consider the case where PI and P2 are brought together at any point

(X, 0, Z) at the boundary surface. For this case rI = r2 = r3 = r ° and

the boundary conditions to be met are:

bUI b U2

at y = o; _i by = _2 by (B.7)

and

at y = o; UI = U 2 .

Hence_

i i
(ql + %1) = _ (%2) (B.8)

0 0

or

% + %_ -- %2 (B.9)
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Since

_y
%2(y- d)

t }
Eu- <_+x_+zq_'_

(B.IO)

and

b_l 1 ql(y-d)
by = --_-i

[ 2 is/2(y - d) 2 + x + z2

+
%1(y + d)

[u+_+ _+ zq_/_

(B.II)

Then at y = o

bU I 8U 2
= (B.12)

_i _y _2 by

yields:

- _lql d + _lqil d - _2qi2 d (B.13)

Solving the two resulting B.C. equations simultaneously gives:

- _lql + _lqil - _2ql - _2qil (B.14)

or

_i - _2

%1 : k"_1 _ _2 ) ql • (B.15)

Since we are seldom interested in the field in region 2, qi2 is unimpor-

tant. The result obtained then is that if _2 > _i the field in region i

2o8



can be found by replacing region 2 with a charge distribution identical to

the original, symmetrical to the boundary, opposite in sign, and of i mag-

nitude l(bl - _2 ) / (bI + _2) i lqli. Note if _2 >> _i the image becomes

simply the negative of the original.

Effects of Current Distribution

If a current carrying conductor is located in close proximity to a

boundary of two different permeabilities, a magnetic charge distribution

will occur as a result of a discontinuity of M at the surface. Thus, con-

sider a conductor in air _ = _o located over an infinite plane slab of per-

meability _ as shown in Figure B.2. In the absence of the magnetic material

the H field from the conductor would be uniform and by Amperes law equal to

The components of H normal to the surface, i.e., H± create a net vertical

component of M in the material according to:

resulting in a discontinuity of M at the boundary since M(air) = 0.

Note it is only the vertical components of the external field which

create a charge distribution. Thus, our image system must be configured to

satisfy the requirements associated with this component.

Consider a small pill box region at the surface such that the field

distribution is uniform over the area of the region as shown in Figure B.3.

In the absence of the material boundary the original field at that location

due to a current carrying conductor is simply

(B.17)

With the boundary, however, the resulting surface charge will modify the

field both external and internal.
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I
P' =_0

T

= _2
H±

Figure B.2 Current Carrying Conductor Above a Keeper Surface

I b° _ Ho I_2 _ Hi

Figure B.3 Pill Box Construction Showing Field Distribution Above and

Below the Keeper Surface
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The surface charge within the infinitesimally thin box causes a

field normal to the surface. By Gauss's law, this is simply

a (B._s)Ho± - 2

The two net fields external to the box are then

Hi = H_ - % (s.19)

H° = H± + H°

where H± is the applied field in the absence of a material boundary. Since

the surface charge is due simply to the discontinuity in magnetization at

the boundary we have:

= M2 = x2Hi (B.2o)

Thus

2% -- ×2Hi = ×2(H_ - %) (B.21)

or

X2

(J )N

Since _ = _ _o 1 the equation B.22 becomes :

_2 - _o (B.23)
_ = (_2_o)H±
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Thus the effect of the boundary is to create a field at every point along

the surface directly proportional to the applied field HA at that point.
With the plane boundary existing in this problem, the effect of the charge

distribution can be accounted for simply by placing a current image on the

opposite side of the boundary from the true source. The magnitude of this
image current should be

limag e = (_r - i_r _ i _ IA " (B.24)

Here the image is a positive image as contrasted to the case where the

source is a magnetic pole distribution.
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APPENDIXC

DERIVATIONOFFIELD FROMA _N CURREi_CARRYINGSTRIP

The field resulti_ from a thin conducting strip is readily calcu-

l_ed to the first order as shownbelow. Consider the geometry of Figure

C.I.

U
h

i

W

L. w

h,z) dx

1.1 I

(o,o,z) [_'HII A

P(Z,o,z)

H±

Figure C. i

Here we calculate the field at any point P resulting from a cur-

rent I in the conductor. The conductor is w meters wide, and the point is

located on a plane h meters below the line and at a distance t meters from

the line center. The line, i.e., the current carrying conductor, is

assumed to extend to infinity in the directions perpendicular to the paper.

For a total current flow I amperes, uniformally distributed across

the conductor, the current in an incremental element dx meters wide is

simp ly
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dI : I_ (C.I)
w

and the incremental resulting field at point P is

Idx (C.2)dH - 2wrw

In thin film work we are concerned only with the component of H parallel

to the plane or

I sin @ dx (C.3)
drill = 2 rw

From the figure it is readily seen that

sin 8 : h/r (C.4)

and

2 2 h 2= (t - x) + (C.5)

Thus carrying out the integral

ll =  w/2 ll (c.6)

we obtain the desired field as

HII 2uw t +hw/2 )- tan-l(
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APPENDIXD

The Fourier program allows any periodi_ _¢aveformor any waveform

which can be forced into a periodic cycle to be decomposedinto its Fourier

series components. It then permits a componeutby componentoperation by

any specified gain-phase versus frequency transfer function and recombines
the resultant series into an output wavefoz_n.

Very basically, consider the followirkff_wa_eformto be analyzed.

es_

r T

Figure D.i

The period of the waveform is shownas T seconds, corresponding to 2
radians. The actual signal may cover any portion of the period T. The

signal is sampledat M + i points and this provides the required input
data.

The Fourier coefficients are calculated by the following sums:

M

A - 1 _es --m---)] mn _ (m) cos (rim KI_ KTT (D.I)
m=o
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B
n

M

m=o

(D. 2)

And yield a series of:

MAXC

A° + n_es(t) = 2

MAXC

gA n cos (r_-_-- t) + Bn sin(n --_--2ut)

(D.3)

EU
In the expression for the coefficients, the term _ is the number of

radians per interval, (region between samples). Thus if the M + i samples

E_ 2_ radians/interval. If the
extended through total 2 w radians _ = M

signal only existed for an equivalent of 200 degrees and was zero for the

last 160 degrees, then taking M + i samples over the 200 degree interval

would yield:

i ooi  o> (D.4)
= M = k M7-- _ interval

The feature of sampling over only the region where the signal is signi-

ficant with respect to zero permits maximum accuracy with reasonable size

values of (M + i), i.e., reasonable number of samples.

The previous equations include all the necessary information re-

quired by the program. A list of the specific information required is

given below.

The first data card supplies:

(1)

(2)

(3)

Number of intervals taken on the waveform. Equivalently,

the number of total sample points less one. The program

calls this JMM.

Number of harmonics to be calculated. The program calls

this JMAXC.

Number of degrees per sample interval. This is calculated

by the programmer as number of degrees over which samples

were taken divided by the number of intervals. It is the
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bracketed quantity in the right most factor of equation

(D.4). Note the information is fed in as degrees per in-

terval, not radians per interval. The program subsequently

converts the number inputted to radians per interval. The

computer calls this JDT.

(4) Period of one cycle in seconds. This is illustrated in

Figure D.I as T. The computer calls it JCAP_.

Following the first data card is a sequence of cards inputting the

values of the sample amplitudes for each point. Each card contains four

sample points. There must be JMM+ i values sequentially given. The pro-

gram calls these data JES [I].

With this information the computer calculates the Fourier coeffi-

cients specified, i.e., Ao, AI, A2, ... AjMAXC,BI, B2, ... BjMAXC. It
prints out the following:

(i) Frequency of fundamental harmonic in cycles per second.
(2) Sample interval in radians/interval. (This is simply as a

check for the programmer).

(3) List of Fourier coefficients.

The next data card inputted contains information allowing the program

to construct the approximate waveform employing the previously generated co-
efficients. This card contains :

(i) Numberof harmonics to be employed in the approximation.

This value can be equal to or less than JMAXC. The program
calls this JNH.

(2) Numberof 2 w periods to be included in the output. The

program calls this JNOP.

Using this data the program calculates the approximation to the input wave-

form and prints the output amplitudes at the samesamplepoints used for

input data. The format is:
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_o(o) _o(_) F°(2) _o(3)

E°(4) Eo(_) _o(6) _o(7)

_'o(ml) _'o(M) _'o(ml)

Figure D.2

and continues in this manner until the number of periods specified by

JNOP is complete. This output data can be punched on cards so that an

automatic plot can be made. This is done by calling the PLOT procedure

with a card added into the deck. This will be discussed later.

The last part of the program accepts as input, data specifying a

gain-phase transfer characteristic, and calculates the effect of this on

the Fourier approximated waveform. From some specified gain-phase plot,

the programmer selects a set of samples which the program can use as data.

The program performs linear interpolation between ss/nple points and hence

the data must be selected with this in mind. As an example consider the

following gain-phase characteristics. Samples are taken at frequencies

intersected by the dotted lines.
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The samples can be taken at any frequency desired and the sample intervals

are completely independent. Only the following two restrictions hold:

(i) IAI (n) and 6(n)must be taken at the same frequency.

(2) The frequency of the last point must be equal to or greater

than the highest Fourier component to be emplosred.
E
o

Note IAIis given simply as a number _ and not in db. Phase is given
l

as degrees, not radians.

The data for this part of the program is supplied to the computer

with the following cards :

(i) Card specifying number of gain-phase sample points to be

supplied. This is simply a single integer n_a_!)er and is

called NIfMPTS.

(2) Next a sequence of cards containing the actual gain-phase

data. Each card represents one sample freque_cy and con-

tains three numbers in the following order:

(a) Frequency at which sample is taken; this i3 called

F___AQ.

(b) Gain magnitude at the sample frequency; thi.; is

called GAIN.
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(c) Phase shift in degrees at sample frequency; this is

called THETA.

Using this data the program calculates a new set of Fourier Coeffi-

cients (the original set modified by gain specifications) and calculates

a new Fourier series including the appropriate phase shifts. The number of

harmonics employed is that previously specified as JNH. From this new ser-

ies the program prints out data points corresponding to the waveform of the

output function. The format is identical to that shown in Figure D.2. As

before, the data may be punched out with the proper format to allow auto-

matic plotting by calling the PLOT procedure.

Following is a summary of the sequence of input data and format

required by the program:

ORDER No. of CARDS DATA FORMAT

ist One Card JMM, JMAXC, JDT, JCAPT 215, 2E20.3

2nd (JMM+I) Cards JES [I] I=0, JMM 4R 12.2

3rd One Card JNH, JNOP 215

4th One Card NUMPTS 13

5th (NUMPTS) Cards FREQ[F],GAIN[F],THETA[F] F=O, (NUMPTS-I) 3E12.2

The following page illustrates the formats in detail.

PLOT ROUTINE :

The PLOT routine is a procedure which punches tubular data in a

format to be acceptable to the Mosley x-y plotter. In some programs where

fine detail is desired and many points are calculated this procedure can

save much time. The procedure is simply called by inserting a card with

the following data punched:

PLOT (Identifier of Variable, Number of Data Points, File

ID of Printer) ;

The procedure normalizes the entire list of data so the minimum value

becomes 0 and the maximum becomes i00. It then punches a set of cards,

each card being one data point, with an x coordinate, (0, i, 2, 3, ...),

and a y coordinate, (0 -_ Y _ i00). From these cards a plot is made of Y

vs. X on the plotter.

Renormalization to real values is effected by the programmer with

the aid of a print out supplied by the procedure. This _produces a set of
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actual values at every i0 intervals from Y=Oto Y=IO0, i.e., Y(O), Y(IO),
Y(20) ... Y(IO0). In addition it also prints out the value of Y at which

the zero axis occurs. A typical print out which was obtained during an

actual program is shownbelow.

THEZEROAXIS IS LOCATEDAT Y = 7

VERTICALAXIS SCALEIS AS FOLLOWS:

Y VALUE

0 -8.729 @-02

lO 3.o58 @ -o2

20 1.484 @ -01

30 2.663 @ -01

40 3.842 @ -01

5o 5.021 @ -O1

60 6.199 @ -01

70 7.378 @ -01

80 8.557 @ -01

90 9.735 @ -01

i00 1.091 @ +00

Since frequency techniques are a powerful approach to many system

analysis problems it is believed that this program will find application

in a variety of problem studies.
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APPENDIX E

DERIVATION OF ivL&GifETiC SUSCEPTIBILITY _OM TORQLTE_ .M___,A_STJ-R'_4]_]NT

The torque on a magnetized sample in a uniform field H is given

simply as

¢ = _ × _ (E.1)

Assume the sample is planar in shape, i.e., a flat disk, hanging on a

fiber which is along the Z axis. If the field has no Z directed component,

then defining the i vector normal to the plane of the disk, and the j

vector as tangent to the plane of the disk the following equations can be

written.

= + " (_,.2)_o iHoi JHoj

H . = H • i = H cos (9
Ol O O

H = _ j = _ sin 0
oj O O

= iM i + jMj , Mi = xHi, Mj = xHj

+ Hdi H. = H . + HdjHi = Hoi ' j oj

Hd = - 4_NM i > N > 0

.'. Hi = Hoi - 4wNiMi, Hj = Hoj - 4_NjMj
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H. = H - 4_N.×H. , H = H - 4_Njx Hl oi l i j oj j

H. H
Ol = O_

Hi = I+4_NiX ., Hj I+4_Nj×

XHoi XHoj

Mi 1 + 4wNiX , Mj = i + 4UNjX

= k (MiHj -Mm.) =(M× Ho)z j _ z

T = kxQ H°iH°j H°_H°i
z i + 4uNix i + 4uNjx )

Tz = _xH sin 2@ i + 4uNix - i + 4wNjX
(E.3)

Let 4wN = D. Then replace T by T/V where V = the volume of the disk.

A = VH 2 sin 2_ , A = X i + DiX I + DjX
o

Solving for X gives:

- A(D i +D$) + [A2(Di - D$) 2 - 4A(D i - D.)] ½

+ D. - DjJ _ (E.5)X = 2[ADiDj l

where in this case A < O. Now for a flat disk, D. _ 4w, and D. = O.
l J

Replacing A by its magnitude and solving again for X gives:

_A2A ± + AI_]_ (E 6)
X = 2

Obviously, only the positive root is meaningful here. Now, recall that in
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the CGS system of units _R = i + 4w X and the calculation is complete.

Following the method of Osborne and assuming the disk to have an ellip-

tical cross-section, a suitable correction was applied to the value of

X by using the more exact relation.
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APPENDIX F

CHARACTERISTICS OF DISTRIBUTED R-C TRANSMISSION LINES

AS FEEDBACK ELEMENTS

The comparative ease of fabrication of capacitors in a monolithic

structure and the performance of the two schemes (coupling capacitors or

feedback elements) will be compared. Most of this discussion is based on

material in Reference (ll), the text Integrated Circuits by the Motorola

staff. Comparison of the coupling capacitor scheme with the feedback

scheme is difficult in multi-stage amplifiers since the low frequency roll-

off is 6 db/octave for each sta_e in a capacitor coupled amplifier whereas

it is 6 db/octave for the entire amplifier with the feedback scheme. More-

over, for the model of Figure 4.5 the resistances are fairly well fixed so

that only increasing the capacitance will lower the roll-off frequency in

the capacitor coupled circuit. In the feedback circuit the time constant

of the network is most important. Reference to Figure 4.6 will show the

limitations on the R and C of the network. The dc gain of the amplifier

is Rf/Ri, where Rf is the total series resistance of the feedback network.

The input signal from the sense line is divided between Ri and the differ-

ential input impedance of the amplifier. Thus the maximum value of Ri is

limited by signal attenuation. The input impedance of a typical stage is

roughly several thousand ohms, so R. is limited to values less than lO00
l

ohms for minimum signal attenuation. The amount of feedback, and hence

the reduction of dc gain from mid-band gain, is limited by stability re-

quirements. Thus the minimum value of the Rf/R i quotient is limited by

amplifier stability. Comparison and choice between the schemes depends on

the high frequency roll-off of the differential amplifiers, the amount of

initial offset and the offset which can be tolerated at the output collec-

tors, and on the total forward gain of the amplifier under consideration.

Since these characteristics of the amplifier are determined by the neces-

sary small signal performance, the design of the feedback loop must be

discussed after the small signal performance has been determined. For the

amplifier under consideration, it turned out that the feedback capacitor

Cf of Figure 4.6 needed to be about the same size as the coupling capacitor

of Figure 4.5 in order to achieve a low frequency roll-off at about 800 kHz

in both cases. This capacitance value was lOO picofarads. The feedback
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series resistance can be fabricated in the sameregion of the chip as

the capacitor. Thus the chip area occupied by the feedback network is no

larger than the area required for the capacitor.

Figure F.I showsa typical cross-section of an epitaxial-diffused
monolithic structure. The various N and P regions can be connected to-

gether with ohmic contacts (not shownin the drawing) as indicated by the

schematic. This interconnection schemereverse biases each P-N junction

and at the sametime maximizes the capacitance between the series R element,
the base diffusion, and signal ground. Here signal ground is not circuit

ground but rather is the +3 volt supply. Knowledgeof the sheet resistivity
of the base diffusion, and typical junction capacitances as a function of
biasing voltage, enables one to model the structure as a series R - shunt C

transmission line. This structure results in a lossy transmission line,

which is exactly what is needed as a feedback element. Because the base

region of the monolithic transistor is shallow compared to the base diffu-

sion depth, the conductivity of the line per unit length is determined by

that portion of the base diffusion no___tunder the emitter. The region under

the emitter can be ignored not only because it has a small cross-section

area_ but also because the diffusion impurity level is typically an order

of magnitude less there than at the top of the base diffusion region. This

order of magnitude drop in impurity level makes the resistivity about an

order of magnitude greater.

The resistance per unit length of line is easy to compute since the

resistivity per square of the base diffusion is known. The unit of length

for the line will be a rail since the width of each side of the base is 1/2

mil. Here the portion directly under the emitter diffusion is not consid-

ered to carry any appreciable current. The sheet resistivity of the base

diffusion is typically 200 ohms/square. The resistance per unit length

(one mil) of line is then 200 ohms.

The capacitance per unit length is more difficult to compute. Two

junctions, base-emitter and base-collector, yield capacitance to signal

ground. The effective capacitance of a reverse biased junction is a strong

function of applied voltage. The emitter-base junction offers the greatest

capacitance per unit area, but is rather lossy due to the high resistance

of the region directly under the emitter. The Motorola staff implies that

the base-collector junction is normally used for coupling applications even

though the capacitance per unit area is less. For a coupling capacitor
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EPITAXIAL
LAYER

(CONNECTTOBASE

#2 #I
-----O

FEED BAC K

NETWORK

V

P S UBSTRATE

3V

BASE

3V

I
COLLECTOR

TYPICAL DIMENSIONS :

Junction Depths - Emitter-base, 2.0 microns

Base-collector, 2.7 microns

Collector epitaxial width-25 microns thick

Minimum emitter width-i mil

Clearance between emitter-base and base-collector

junctions on surface-0.5 mil

Figure F.I Cross-section of a typical monolithic structure showing

junctions biased for use as a feedback element for the sense

amplifier. The feedback element would be long and narrow,

so terminal No. 2 would connect to base at the far end
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application, series resistance such as that with the emitter-base junction

results in direct signal losses and must be avoided. However, for applica-
tions such as a feedback network this series resistance is less important.

Thus the shunt element of the transmission line model is a simple capacitor,
rather than a capacitor and resistor in series. To take into account the

isolation of the capacitor by the base resistance, one might use a lower

figure of capacitance per unit area. Rather than attempt to simplify a
complex problem, the capacitance figures listed in Table 10-1 of Reference

(ll) will be used directly. If such a network were to be constructed, act-

ual measurementswould be far more meaningful than calculations. The pur-

pose of this section is not to design a working network, but rather to point

out that the feedback network takes advantage of the distributed capacitance

and resistance inherent in a monolithic structure, whereas a coupling capa-
citor has losses due to the distributed nature of the structure. In this

particular application both the coupling capacitors and the feedback network

will occupy about the samechip area, but given different, improved perfor-
manceof the differential amplifiers, the feedback network would offer ad-

vantages with respect to the chip area occupied.

Twopossible models for the feedback element are shownin Figure F.2.

Since the feedback structure will be long and narrow, it will be treated as

a transmission line. Themodels are for an incremental length of this line.
As discussed above, the model of Figure F.2a is accurate but the element

values are hard to estimate. The model of Figure F.2b is simplified in that

the series resistance of the shunt leg is ignored and the capacitances are
lumped together. The values shownare for a line with a 2 rail wide emitter

diffusion and a 3 rail base diffusion. These are arbitrary, but reasonable,
dimensions. The base diffusion sheet resistivity was assumedto be 200
ohms/square before the emitter diffusion.

The general transmission line is considered in manytexts, e.g.,
Reference (18), Ramo,Whinnery, and VanDuzer's Fields and Waves in Commun-

ication Electronics. If a line has a distributed series impedance Z per

unit length and a distributed shunt Y per unit length and the line is ex-

cited by a steady state sinusoid, the voltage and currents can be expressed

as."

V(z,t) = <V+e -Yz + V_eYZ)e jwt
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Figure F.2 Models for R-C transmission lines. Part (a) shows exact model

for transmission line. Part (b) is a simplified model for a

line with a 2 mil emitter and a 3 mil wide base
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1 \(V+e-YzI(z,t)= -Z-
o

_ V_eYZ)e j_t

where V+ and V_ are complex coefficients determined by the boundary condi-

tions on the line, w is the excitation frequency and ¥ and Z are determined
o

by the line parameters. The propagation constant y is given by

y : (zY)l/2

Since Z = R and Y = jwC for the model of Figure F.2b,

¥ : (w_c/2)i/2+ j(®Rc/2)i/2.

Here the real and imaginary parts have been explicitly shown. Taking the

values shown in Figure F.2b for R and C, we have

¥ : (17_× i0-i_)I/2 (1+ j)

The propagation constant is seen to be a function of frequency, as expec-

ted for a lossy line. The characteristic impedance is also a function of

frequency and is given by

zo : (z/Y)1/2 : (R/_c)1/2 (1- j) : (_F.I× lol2/w)I/2 (1- j)

The coefficients V+ and V_ are determined by considering the termination

at each end of the line. An equivalent circuit is shown in Figure F.3.

The line is shown as 50 units in length, which corresponds to a base diffu-

sion 50 mil long in the integrated circuit.

The solution of the line equations for the voltage transfer ratio

Vo/V i : V(O,t)/V(z,t) is a function of frequency and line length. The gen-

eral procedure will be given here and the transfer ratio Vo/V_g will be
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Figure F.3 Equivalent circuit of a lossy transmission line 50 units in

length
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computed for a line length of 50 mil and for several excitation frequencies.

The magnitude and phase of the transfer ratio may be recorded on a Bode plot

and a smooth curve drawn through the points. This curve will allow the

transmission line to be replaced by an equivalent lumped circuit.

Given a line length and an excitation frequency, the procedure is

as follows :

l) RL and Z° are known. Form the voltage reflection coefficient

V

p(O) -- - =
v+ (RL - %)/(RL + %)

The reflection coefficient is a function of z. In general

p (z) = (V_/V+) e2Yz .

The reflection coefficient gives the ratio between the incident and

reflected waves at any point on the line.

2) Use the Smith chart to compute the reflection coefficient at

the input to the line, that is, P(-50).

3) The input impedance to the line may also be determined.

l o i - p( )-50

puted.

4) The voltage at the input terminals to the line may now be com-

Reference to Figure F.3 will show that V i = ZiV/(Z i + Rg).

5) There are now two equations for V(-50).

ZiVg/(Z i + Rg) = V+e 50Y + V_e -5OY

p(-50) = (V_/V+)e -10OY
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Rememberthat both p and Z. are functions of frequency.l
maybe solved for V+ and V .

6) The output voltage may now be written as

These equations

V° = V+ + V_ .

The complete expression is

Vo(t) = eJWt(v+ + V_) .

Several transfer ratios have been worked out for the line described. A

load resistance of 500 ohmsand a generator resistance of 2500 ohmswere
assumedas typical. The results are tabulated in Figure 4.7.

The distributed line does not behave like a simple R-C network; yet
it is still useful as a feedback element. Care needs to be taken inde-

signing the feedback loop, but once the loop is designed, the fabrication

problems should be less with the feedback system than with coupling capa-

citors since stray losses are unimportant. Loop design will proceed in a

conventional fashion once the small signal characteristics of the amplifier
are known.
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PHOTORESISTPROCESSING

Kodak-Metal-Etch-Resist (KMER)and AZ-lll resists were used for

photoengraving metal films in multilayer film structures. Specimenswere
placed in a clean covered petri dish and stored in a desiccator whenthe

photoengraving of films did not follow immediately the vacuumdeposition

process; hence, they remained dry and reasonably clean before application

of the respective photo resists. In general, process procedures recommended

by the vendor of each resist were followed. Specific processing details
are given below for each resist, and processing apparatus are discussed in
Section V-A-3.

Processing of KMER

KMER_ KMER Developer, and KMER Thinner are products of the Eastman

Kodak Company. KMER was used effectively for masking in the precision

etching of both aluminum and chromium-gold films. For spin application,

the resist was thinned by mixing one volume of resist with one volume of

thinner. The resist was filtered during application by applying it with

a 20 cc hypodermic syringe fitted with a micro-syringe filter holder

(Millipore Filter Corporation Cat. No. XX30 025 00). A 14 _ filtering

membrane was used. The stepwise process was as follows:

(1) Place substrate on spinner,

(2) Spin substrate at 2000 r.p.m, for a few seconds to remove dust

particles,

(3) Stop spinner and cover substrate surface with l:l; KMER:KMER

Thi nne r,

(4) Spin at 1500 r.p.m, for 2 minutes,

(5) Apply a second coat by repeating steps (3), and (4),

(6) Place on hot plate at a regulated temperature of llO°C and bake

for five minutes,

(7) Mask substrate with appropriate contact photomask in vacuum

frame,

(8) Expose with exposure lamp for 1 minute,

(9) Develop in dish of KMER Developer for l-l/2 minutes - mildly

agitate solution,
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(I0) Removefrom KMERDeveloper and while still wet, spray with
reagent grade xylene for 1 minute (a solvent spray gun was

operated at 20 to 40 psi and held at a distance of about 12

inches from specimen),

(ll) Dry with jet of dry air or nitrogen from spray gun,
(12) Examinethe developed image with a stereomicroscope. Usually

the best development resulted by repeating steps (9) thru (ll)

with a development period of 30 seconds in the KMERDeveloper.

After etching of the metal film, the KMERimage was stripped or re-

moved. A commercial stripping solution, Resist Strip J-lO0, of the Indust-

Ri-ChemLaboratory, Richardson, Texas wasused in this process. The pro-
cedure was as follows:

(1) Place substrate on the bottom of a 1 litter beaker with the

film side up,
(2) Add 50 ml of concentrated Resist Strip J-1OO,

(3) Heat solution to 1OO°Cand leave in solution at this temperature

for three to five minutes,

(4) Spray film surface vigorously with the J-1OOsolution using a

hypodermic syringe,

(5) Removefrom stripping solution and spray with reagent grade

Xylene at 4Opsi to removeJ-lO0 solution,

(6) Dry with jet of dry air or nitrogen,

(7) Inspect and repeat if necessary.

In the inspection of step (7), a stereomicroscope was employed at

magnifications ranging from 3X to 60X. To aid in the detection of remnant

resist, the substrates were placed on a clean piece of blue cobalt glass.

A directional microscope lamp was held so that the light intercepted the
surface at a large angle of incidence while the surface was viewed from near

normal direction with the microscope. This technique permits the detection _

of surface particles that are not ordinarily seen with full field illumina-

tion. It is very difficult to remove completely the remnants of KMERwith
commercially available stripping solutions. The remnant material is a

slimy scum-like substance that is extremely adherent to metal and glass
surfaces. In fact, this laboratory has been unable to completely remove the

scumeven by cleaning in hot sulfuric acid. Better stripping of KMERcan be

had by ultrasonically cleaning in hot J-100 stripper. Ultrasonic cleaning
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wasused quite satisfactorily on single layer aluminum, gold over chromium

films, _ud _Itiple layers of aluminumor Cr-Au-Cr with silicon monoxide;

however, permalloy films were damagedwith the ultrasonic technique; hence
the technique could not be used after the permalloy film was deposited in

the multilayer memorystructures. Whereexcessive damageto metal films

or the substrate does not occur, cleaning in hot (150°C) chromic acid or

sulfuric acid is very effective in removing the scummyremains of KMER.

These acids can be used for cleaning chromium- gold films quite satisfac-
torily.

Processin_ of Type AZ-!II Resist

Type AZ-III photo resist and its developer were obtained from the

Shipley Company, Inc. The resist was used primarily for masking to photo-

engrave permalloy films. Spin application similar to that for the pre-

viously discussed KMER was employed at first. However, the resist mask had

too many pin holes when applied in double coats at a spin speed of 2500 r.p.m.

Eventhough a clean box was used for applying the resist, the laboratory was

not a clean room, and dust collection on the substrate surface was probably

the main source of trouble. To eliminate the pin hole problem, the sub-

strates were dip-coated by submerging them in the unthinned resist and

slowly withdrawing to form a uniform film of the resist. The thicker coat-

ings of resist obtained in this manner eliminated the pin hole problem. The

remainder of the processing was as follows:

(i) Lay resist coated substrate on a level surface and dry in air

at room temperature for 15 minutes,

(2) Place on a hot plate regulated at a temperature of 90°C and

bake for 20 minutes (15 minutes of baking was satisfactory for

thinner films applied by spinning),

(3) Mask substrate with appropriate contact photomask in vacuum

frame,

(4) Expose with exposure lamp for i0 minutes,

(5) Develop in dish of solution consisting of 4 volumes of deionized

water to one volume of AZ-303 developer - mildly agitate solu-

tion,

(6) Remove from developer and while still wet, rinse well with tap

water using considerable pressure,

(7) Dry with hot air gun (do not heat resist above 95°C),
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(8) Examine the developed image with a stereomicroscope. Usually

the best development resulted by repeating steps (5) thru (7)

with a development period of 30 seconds.

After etching of the permalloy film, the resist image was stripped.

Since AZ-lll is a positive working resist it can readily be removed by ex-

posing the image and removing in the regular developer; this method was used

primarily. The unexposed resist can be removed in acetone. Thus, to insure

complete removal of the resist, acetone was used in subsequent cleaning pro-

cesses before additional films were deposited over the permalloy films.
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APPENDIX H

SUBSTRATE CLEANING METHODS

The following are stepwise descriptions of the two substrate

cleaning methods used at various stages of fabricating multilayer film

structures. Reagent grade chemicals were used in both methods. In the

performance of these cleaning procedures, the substrates were not allowed

to dry between successive baths. The methanol rinse of step 5, method i,

was used primarily to remove water from the substrates and rack before

degreasing since water and trichloroethyiene do not mix very well. The

trichloroethylene degreaser was used primarily as a storage point immedi-

ately before film deposition and as a technique of drying the substrates

to obtain a streak-free surface rather than for any unique cleaning or de-

greasing property of the tricholoroethylene vapor. Cleaning method number

i was used for initial cleaning of substrates and for cleaning chromium-

gold films after photoengraving and stripping of photo resist (KMER). For

the latter cleaning, the acid temperature was increased to 125 to 150°C

for more effective removal of remnants of KMER. Method number 2 was used

for cleaning permalloy films after photoengraving and stripping of photo

resist (AZ-III). Cleaning apparatus is discussed in Section II-A-4.

Cleaning Method i

(i) Scribe code numbers on back of substrates and arrange in

deposition order in substrate cleaning rack,

(2) Place racked substrates in a fresh hot chromic acid bath,

about lO0°C, for 5 minutes (chromic acid formed by saturating

concentrated sulfuric acid with chromium trioxide at room

temperature -- keep acid dish covered to minimize oxidation

at elevated temperatures),

(3) Remove from the chromic acid and rinse away gross acid with

flowing demineralized water,

(4) Submerge racked substrates in high purity water rinse, Figure

5.4, leave in recirculating bath a minimum of i0 minutes after

resistivity returns to a minimum of 15 mego?_ns,

(5) Remove racked specimens from water rinse and rinse with methanol

from a blow flask,
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(6) Place racked substrates in trichloroethylene degreaser for a

minimum of lO minutes or until ready to place in vacuum deposi-

tion apparatus,

(7) Slowly remove substrates from degreaser,

(8) Use cleaned tweezers to remove substrates from cleaning rack

and position in holders in the v_cuum deposition apparatus.

Cles_uing Method 2

(1) Place racked substrates in a beaker of boiling acetone for

three to five minutes,

(2) Rinse with methanol from a blow flask,

(3) Continue with steps (4) thru (9) of Method 1.
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